全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Statistical methods for the analysis of left-censored variables [Statistische Analysemethoden für linkszensierte Variablen und Beobachtungen mit Werten unterhalb einer Bestimmungs- oder Nachweisgrenze]

DOI: 10.3205/mibe000133

Keywords: left-censored variables , limit of detection , multiple imputation , Tobit regression , occupational exposure , welding

Full-Text   Cite this paper   Add to My Lib

Abstract:

[english] In some applications statisticians are confronted with values which are reported to be below a limit of detection or quantitation. These left-censored variables are a challenge in the statistical analysis. In a simulation study, we compare different methods to deal with this type of data in statistical applications. These include measures of location, dispersion, association, and statistical modeling. Our simulation study showed that the multiple imputation approach and the Tobit regression lead to unbiased estimates, whereas the na ve methods including simple substitution of non-detects lead to unreliable estimates. We illustrate the application of the multiple imputation approach and the Tobit regression with an example from occupational epidemiology. [german] In der statistischen Praxis treten immer wieder Variablen mit Werten unterhalb einer Bestimmungs- oder Nachweisgrenze auf. Diese sind linkszensiert und stellen daher eine Herausforderung für die statistische Analyse dar. Im Rahmen einer Simulationsstudie vergleichen wir Sch tzmethoden zur Berechnung von Lage- und Streuungma en, Korrelationen und Regressionsparametern bei diesen Variablen. Unsere Ergebnisse zeigen, dass die multiple Imputationsmethode und die Tobit Regression zu unverzerrten Sch tzungen führen. Naive Methoden, einschlie lich der einfachen Substitution von zensierten Beobachtungen, ergeben hingegen unzuverl ssige Sch tzungen. Wir illustrieren die Anwendung der multiplen Imputationsmethode und der Tobit Regression anhand eines Beispiels aus der Epidemiologie der Arbeitswelt.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133