Abnormal hippocampal function likely contributes to relational learning deficits observed in schizophrenia. It is unknown whether these deficits can be attenuated with a training intervention. The purpose of this project was to determine if training could facilitate relational learning of the transverse patterning task in schizophrenia. Healthy and schizophrenia subjects completed a version of transverse patterning that incorporated training. The majority of subjects with schizophrenia successfully learned transverse patterning when provided with training. A subgroup (approximately 25%) of schizophrenia subjects showed no tendency to learn with training. These results were replicated in a second study with a separate cohort and different stimuli. This study illustrates that relational learning of the transverse patterning can be facilitated in schizophrenia with training.
References
[1]
Harrison, P.J. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 2004, 174, 151–162, doi:10.1007/s00213-003-1761-y.
[2]
Eichenbaum, H. The hippocampus and declarative memory: Cognitive mechanisms and neural codes. Behav. Brain Res. 2001, 127, 199–207, doi:10.1016/S0166-4328(01)00365-5.
[3]
Rudy, J.W.; Sutherland, R.J. Configural association theory and the hippocampal formation: An appraisal and reconfiguration. Hippocampus 1995, 5, 375–389, doi:10.1002/hipo.450050502.
[4]
Ongur, D.; Cullen, T.J.; Wolf, D.H.; Rohan, M.; Barreira, P.; Zalesak, M.; Heckers, S. The neural basis of relational memory deficits in schizophrenia. Arch. Gen. Psychiatr. 2006, 63, 356–365, doi:10.1001/archpsyc.63.4.356.
Hanlon, F.M.; Weisend, M.P.; Hamilton, D.A.; Jones, A.P.; Thoma, R.J.; Huang, M.; Martin, K.; Yeo, R.A.; Miller, G.A.; Canive, J.M. Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophr. Res. 2006, 87, 67–80, doi:10.1016/j.schres.2006.05.021.
[7]
Spence, K.W. The nature of the response in discrimination learning. Psychol. Rev. 1952, 59, 89–93, doi:10.1037/h0063067.
[8]
Alvarado, M.C.; Rudy, J.W. Rats with damage to the hippocampal-formation are impaired on the transverse-patterning problem but not on elemental discriminations. Behav. Neurosci. 1995, 109, 204–211, doi:10.1037/0735-7044.109.2.204.
[9]
Alvarado, M.C.; Bachevalier, J. Selective neurotoxic damage to the hippocampal formation impairs performance of the transverse patterning and location memory tasks in rhesus macaques. Hippocampus 2005, 15, 118–131, doi:10.1002/hipo.20037.
[10]
Alvarado, M.C.; Bachevalier, J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J. Neurosci. 2005, 25, 1599–1609, doi:10.1523/JNEUROSCI.4457-04.2005.
[11]
Rickard, T.C.; Grafman, J. Losing their configural mind. Amnesic patients fail on transverse patterning. J. Cogn. Neurosci. 1998, 10, 509–524, doi:10.1162/089892998562915.
[12]
Rickard, T.C.; Verfaellie, M.; Grafman, J. Transverse patterning and human amnesia. J. Cogn. Neurosci. 2006, 18, 1723–1733, doi:10.1162/jocn.2006.18.10.1723.
[13]
Bachevalier, J.; Alvarado, M.C.; Malkova, L. Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biol. Psychiatr. 1999, 46, 329–339, doi:10.1016/S0006-3223(99)00123-7.
[14]
Astur, R.S.; Constable, R.T. Hippocampal dampening during a relational memory task. Behav. Neurosci. 2004, 118, 667–675, doi:10.1037/0735-7044.118.4.667.
[15]
Meltzer, J.A.; Negishi, M.; Constable, R.T. Biphasic hemodynamic responses influence deactivation and may mask activation in block-design fMRI paradigms. Hum. Brain Mapp. 2008, 29, 385–399, doi:10.1002/hbm.20391.
Astur, R.S.; Sutherland, R.J. Configural learning in humans: The transverse patterning problem. Psychobiology 1998, 26, 176–182.
[20]
Rowland, L.M.; Astur, R.; Spieker, E.A.; Holcomb, H.H. The impact of training on relational learning in schizophrenia. Schizophr. Bull. 2007, 33, 539–540.
First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-P), version 2; New York State Psychiatric Institute: New York, NY, USA, 1995.
[23]
First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. Structured Clinical Interview for DSM-IV Axis I Disorders-Non-Patient Edition (SCID-I/NP), version 2.0 ed.; Biometrics Research; New York State Psychiatric Institute: New York, NY, USA, 1996.
[24]
Statistical Package for the Social Sciences, Rel. 12.0.1., SPSS Inc. Chicago, IL, USA, 2001.
[25]
Overall, J.; Gorham, D. The brief psychiatric rating scale. Psychol. Rep. 1962, 10, 799–812, doi:10.2466/pr0.1962.10.3.799.
[26]
Coleman, M.J.; Titone, D.; Krastoshevsky, O.; Krause, V.; Huang, Z.; Mendell, N.R.; Eichenbaum, H.; Levy, D.L. Reinforcement ambiguity and novelty do not account for transitive inference deficits in schizophrenia. Schizophr. Bull. 2010, 36, 1187–1200, doi:10.1093/schbul/sbp039.
Hanlon, F.M.; Weisend, M.P.; Yeo, R.A.; Huang, M.; Lee, R.R.; Thoma, R.J.; Moses, S.N.; Paulson, K.M.; Miller, G.A.; Canive, J.M. A specific test of hippocampal deficit in schizophrenia. Behav. Neurosci. 2005, 119, 863–875, doi:10.1037/0735-7044.119.4.863.
[29]
Cabeza, R.; Grady, C.; Nyberg, L.; Mcintosh, A.; Tulving, E.; Kapur, S.; Jennings, J.; Houle, S.; Craik, F. Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. J. Neurosci. 1997, 17, 391–400.
[30]
Park, D.C.; Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196, doi:10.1146/annurev.psych.59.103006.093656.
Fiszdon, J.M.; McClough, J.F.; Silverstein, S.M.; Bell, M.D.; Jaramillo, J.R.; Smith, T.E. Learning potential as a predictor of readiness for psychosocial rehabilitation in schizophrenia. Psychiatr. Res. 2006, 143, 159–166, doi:10.1016/j.psychres.2005.09.012.
[34]
Kurtz, M.M.; Wexler, B.E. Differences in performance and learning proficiency on the Wisconsin Card Sorting Test in schizophrenia: do they reflect distinct neurocognitive subtypes with distinct functional profiles? Schizophr. Res. 2006, 81, 167–171, doi:10.1016/j.schres.2005.09.003.
[35]
Wiedl, K.H.; Wienobst, J.; Schottke, H.H.; Green, M.F.; Nuechterlein, K.H. Attentional characteristics of schizophrenia patients differing in learning proficiency on the Wisconsin Card Sorting Test. Schizophr Bull 2001, 27, 687–695, doi:10.1093/oxfordjournals.schbul.a006907.
[36]
Fisher, M.; Holland, C.; Merzenich, M.M.; Vinogradov, S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am. J. Psychiatr. 2009, 166, 805–811, doi:10.1176/appi.ajp.2009.08050757.
[37]
Fisher, M.; Holland, C.; Subramaniam, K.; Vinogradov, S. Neuroplasticity-based cognitive training in schizophrenia: An interim report on the effects 6 months later. Schizophr. Bull. 2010, 36, 869–879, doi:10.1093/schbul/sbn170.
[38]
Wexler, B.E.; Anderson, M.; Fulbright, R.K.; Gore, J.C. Preliminary evidence of improved verbal working memory performance and normalization of task-related frontal lobe activation in schizophrenia following cognitive exercises. Am. J. Psychiatr. 2000, 157, 1694–1697, doi:10.1176/appi.ajp.157.10.1694.
[39]
Watzke, S.; Brieger, P.; Kuss, O.; Schoettke, H.; Wiedl, K.H. A longitudinal study of learning potential and rehabilitation outcome in schizophrenia. Psychiatr. Serv. 2008, 59, 248–255, doi:10.1176/appi.ps.59.3.248.