|
Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1DAbstract: In this study, we used a candidate screen to identify enzymes that methylate H1 and to map their corresponding methylation sites. We found that the histone lysine methyltransferases G9a/KMT1C and Glp1/KMT1D methylate H1.2 in vitro and in vivo, and we mapped this novel site to lysine 187 (H1.2K187) in the C-terminus of H1. This H1.2K187 methylation is variant-specific. The main target for methylation by G9a in H1.2, H1.3, H1.5 and H1.0 is in the C-terminus, whereas H1.4 is preferentially methylated at K26 (H1.4K26me) in the N-terminus. We found that the readout of these marks is different; H1.4K26me can recruit HP1, but H1.2K187me cannot. Likewise, JMJD2D/KDM4 only reverses H1.4K26 methylation, clearly distinguishing these two methylation sites. Further, in contrast to C-terminal H1 phosphorylation, H1.2K187 methylation level is steady throughout the cell cycle.We have characterised a novel methylation site in the C-terminus of H1 that is the target of G9a/Glp1 both in vitro and in vivo. To our knowledge, this is the first demonstration of variant-specific histone methylation by the same methyltransferases, but with differing downstream readers, thereby supporting the hypothesis of H1 variants having specific functions.In eukaryotic cells, DNA is packaged into chromatin. The building block of chromatin is the nucleosomal core particle containing a histone octamer (formed by the histones H2A, H2B, H3 and H4) around which 147 bp of DNA (147 bp) are wrapped [1]. The linker histone H1 binds to the DNA between the nucleosomal core particles, and is essential to stabilise higher order chromatin structures [2].Human cells possess up to 11 H1 variants, all consisting of a short N-terminal tail, a globular core domain and a C-terminal tail, making up approximately 50% of the whole protein [3,4]. H1.0 is mainly expressed in terminally differentiated cells. H1.1 expression has to date only been reported for a subset of tissues. H1.2 to H1.5 are expressed in almost all cells, wi
|