|
MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fishAbstract: In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region.We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.The structure of chromatin adjusts dynamically depending on the functions of the cell. The basic unit of the chromatin is the nucleosome, which in its core particle consists of 146 bp of DNA wrapped around an octamer of histone proteins (two copies of H2A, H2B, H3 and H4), followed by a linker DNA sequence that is bound by H1 histone [1]. Changes in this highly organized structure are produced through various related epigenetic mechanisms such as DNA methylation, post-translational modifications (PTMs) of histones, ATP-dependent chromatin remodeling, and exchange of 'conventional' histones for other variants [2,3]. Interestingly, epigenetic mechanisms seem to allow an organism to respond to environmental changes by adjusting gene expression [4]. In this context, nucleosome reorganization mediated by epigenetic mechanisms has emerged as a crucial step in gen
|