|
Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cellsAbstract: We show that two distinct polycomb repressive complex (PRC)2 complexes contribute to skeletal muscle cell differentiation: the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. Interestingly, the opposing dynamics of PRC2-Ezh2 and PRC2-Ezh1 at these muscle regulatory regions is differentially regulated at the chromatin level by Msk1 dependent methyl/phospho switch mechanism involving phosphorylation of serine 28 of the H3 histone (H3S28ph). While Msk1/H3S28ph is critical for the displacement of the PRC2-Ezh2 complex, this pathway does not influence the binding of PRC2-Ezh1 on the chromatin. Importantly, depletion of Ezh1 impairs muscle differentiation and the chromatin recruitment of MyoD to the MyoG promoter in differentiating myotubes. We propose that PRC2-Ezh1 is necessary for controlling the proper timing of MyoG transcriptional activation and thus, in contrast to PRC2-Ezh2, is required for myogenic differentiation.Our data reveal another important layer of epigenetic control orchestrating skeletal muscle cell terminal differentiation, and introduce a novel function of the PRC2-Ezh1 complex in promoter setting.During development, differentiation programs require global rearrangements in repression and activation of lineage-specific genes. Chromatin-based epigenetic mechanisms ensure correct integration of developmental signals at gene regulatory regions, allowing the action of transcription factors and maintaining novel expression states in derived cell populations. Polycomb group (PcG) proteins are transcriptional repressors that remodel chromatin through epigenetic modifications that prevent changes in cell identity by maintaining transcription patterns, throughout development and in adulthood [1,2]. They comprise two major multiprotein complexes, polycomb repressive complex (PRC)-1
|