Background. Metabolic Syndrome (MetS) is a major public health concern. Objective. The aim of this study was to estimate the frequency of MetS, its components, and factors associated with MetS amongst apparently healthy individuals in Pakistan. Methods. A retrospective cross-sectional study was conducted at the executive Clinics of Aga Khan Hospital, Pakistan. Medical records of patients aged ≥18 years visiting the clinics from July 2011 to December 2011 were consecutively reviewed. Records in which either MetS components data or 10% of overall data was missing were excluded. A total of 1329 participants’ records was included in final analysis. Data was analyzed using SPSS version 19 and multivariable logistic regression was used to identify the factors associated with MetS. Results. A total of 847 (63.7%) participants had MetS; mean age of the participants were 47.6 ± 11.6 years. About 70.4% were males and 29.6% were females. Approximately 70% of participants had BMI ≥25?kg/m2. MetS was associated with male gender (AOR?=?2.1; 95%?C.I: 1.6–3.2) and history of diabetes among parents (AOR?=?3.0; 95%?C.I: 1.6–6.0). Conclusion. This study shows that a large proportion of population has MetS and is overweight or obese. This requires urgent interventions on part of health care providers’ especially family physicians. Educating masses about life style factors can make a difference. Further researches on this issue are warranted. 1. Introduction Globally, Metabolic Syndrome (MetS) has become a public health concern and is a major cause of morbidity and mortality. Many studies have provided strong evidence for the association of MetS with acute coronary syndrome [1–4]. In health care services the value of MetS derives largely from its potential to reduce the risk of cardiovascular disease in the general population by treating the disease [5]. There has been much a debate on the definition of MetS. However, recent definition of MetS given by American heart association and the National heart, Lung and Blood Institute (AHA/NHLBI) in 2005 declared that a clinical diagnosis of MetS can be established if any three of the following factors are present, elevated triglyceride level (TG): elevated waist circumference, decreased HDL-cholesterol (HDL) level, elevated fasting glucose, and elevated blood pressure [6]. The estimated prevalence of MetS in general population is between 17 and 25% [7]. Various studies have demonstrated that the major causes leading to MetS are insulin resistance, obesity, and genetic predisposition [8]. Several cross-sectional studies have
References
[1]
T. Kasai, K. Miyauchi, T. Kurata et al., “Prognostic value of the metabolic syndrome for long-term outcomes in patients undergoing percutaneous coronary intervention,” Circulation Journal, vol. 70, no. 12, pp. 1531–1537, 2006.
[2]
J. Sundstr?m, U. Risérus, L. Byberg, B. Zethelius, H. Lithell, and L. Lind, “Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: prospective, population based cohort study,” BMJ, vol. 332, no. 7546, pp. 878–881, 2006.
[3]
A. A. Rizvi, “Inflammation markers as mediators of vasculo-endothelial dysfunction and atherosclerosis in the metabolic syndrome and type 2 diabetes,” Chinese Medical Journal, vol. 120, no. 21, pp. 1918–1924, 2007.
[4]
Z. Cao, Y. J. Zhou, Y. X. Zhao, Y. Y. Liu, Y. H. Guo, and W. J. Cheng, “Rosiglitazone could improve clinical outcomes after coronary stent implantation in nondiabetic patients with metabolic syndrome,” Chinese Medical Journal, vol. 119, no. 14, pp. 1171–1175, 2006.
[5]
J. B. Buse, H. N. Ginsberg, G. L. Bakris et al., “Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association,” Diabetes Care, vol. 30, no. 1, pp. 162–172, 2007.
[6]
S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome An American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Current Opinion in Cardiology, vol. 21, no. 1, pp. 1–6, 2006.
[7]
F. Alsaraj, J. H. McDermott, T. Cawood et al., “Prevalence of the metabolic syndrome in patients with diabetes mellitus,” Irish Journal of Medical Science, vol. 178, no. 3, pp. 309–313, 2009.
[8]
B. Balkau, J. E. Deanfield, J. P. Després et al., “International day for the evaluation of abdominal obesity (IDEA): a study of waist circumference, cardiovascular disease, and diabetes mellitus in 168 000 primary care patients in 63 countries,” Circulation, vol. 116, no. 17, pp. 1942–1951, 2007.
[9]
Y. W. Park, S. Zhu, L. Palaniappan, S. Heshka, M. R. Carnethon, and S. B. Heymsfield, “The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994,” Archives of Internal Medicine, vol. 163, no. 4, pp. 427–436, 2003.
[10]
M. Gupta, N. Singh, and S. Verma, “South Asians and cardiovascular risk: what clinicians should know,” Circulation, vol. 113, no. 25, pp. e924–e929, 2006.
[11]
P. Joshi, S. Islam, P. Pais et al., “Risk factors for early myocardial infarction in South Asians compared with individuals in other countries,” JAMA, vol. 297, no. 3, pp. 286–294, 2007.
[12]
W. Rathmann, G. Giani, S. H. Wild et al., “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 10, pp. 2568–2569, 2004.
[13]
S. Nishtar, S. Shera, G. Raffique, K. B. Mohamud, and A. Ahmed, “Diabetes prevention and control: national Action Plan for NCD Prevention, Control and Health Promotion in Pakistan,” Journal of the Pakistan Medical Association, vol. 54, no. 12, pp. S-26–S-30, 2004.
[14]
R. L. Hanson, G. Imperatore, P. H. Bennett, and W. C. Knowler, “Components of the “metabolic syndrome” and incidence of type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 3120–3127, 2002.
[15]
P. W. F. Wilson, R. B. D'Agostino, H. Parise, L. Sullivan, and J. B. Meigs, “Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus,” Circulation, vol. 112, no. 20, pp. 3066–3072, 2005.
[16]
T. H. Jafar, “Women in Pakistan have a greater burden of clinical cardiovascular risk factors than men,” International Journal of Cardiology, vol. 106, no. 3, pp. 348–354, 2006.
[17]
L. Fezeu, B. Balkau, A. P. Kengne, E. Sobngwi, and J. C. Mbanya, “Metabolic syndrome in a sub-Saharan African setting: central obesity may be the key determinant,” Atherosclerosis, vol. 193, no. 1, pp. 70–76, 2007.
[18]
V. Tikhonoff and E. Casiglia, “Metabolic syndrome: nothing more than a constellation?” European Heart Journal, vol. 28, no. 7, pp. 780–781, 2007.
[19]
R. Kahn, “The metabolic syndrome (Emperor) wears no clothes,” Diabetes Care, vol. 29, no. 7, pp. 1693–1696, 2006.
[20]
K. G. M. M. Alberti, P. Zimmet, and J. Shaw, “Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation,” Diabetic Medicine, vol. 23, no. 5, pp. 469–480, 2006.
[21]
R. B. Ervin, “Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006,” National Health Statistics Reports, no. 13, pp. 1–7, 2009.
[22]
T. H. Jafar, N. Chaturvedi, and G. Pappas, “Prevalence of overweight and obesity and their association with hypertension and diabetes mellitus in an Indo-Asian population,” CMAJ, vol. 175, no. 9, pp. 1071–1077, 2006.
[23]
M. Z. Iqbal Hydrie, A. S. Shera, A. Fawwad, A. Basit, and A. Hussain, “Prevalence of metabolic syndrome in urban Pakistan (Karachi): comparison of newly proposed international diabetes federation and modified adult treatment panel III criteria,” Metabolic Syndrome and Related Disorders, vol. 7, no. 2, pp. 119–124, 2009.
[24]
A. Basit and A. S. Shera, “Prevalence of metabolic syndrome in Pakistan,” Metabolic Syndrome and Related Disorders, vol. 6, no. 3, pp. 171–175, 2008.
[25]
A. Mohsin, J. Zafar, Y. B. Nisar et al., “Frequency of the metabolic syndrome in adult type2 diabetics presenting to Pakistan Institute of Medical Sciences,” Journal of the Pakistan Medical Association, vol. 57, no. 5, pp. 235–238, 2007.
[26]
H. F. Abdul-Rahim, A. Husseini, E. Bjertness, R. Giacaman, N. H. Gordon, and J. Jervell, “The metabolic syndrome in the West Bank population: an urban-rural comparison,” Diabetes Care, vol. 24, no. 2, pp. 275–279, 2001.
[27]
G. N. Thomas, S. Y. Ho, E. D. Janus, K. S. L. Lam, A. J. Hedley, and T. H. Lam, “The US National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) prevalence of the metabolic syndrome in a Chinese population,” Diabetes Research and Clinical Practice, vol. 67, no. 3, pp. 251–257, 2005.
[28]
C. Lara-Castro, Y. Fu, B. H. Chung, and W. T. Garvey, “Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease,” Current Opinion in Lipidology, vol. 18, no. 3, pp. 263–270, 2007.
[29]
O. Renaldi, B. Pramono, H. Sinorita, L. B. Purnomo, R. H. Asdie, and A. H. Asdie, “Hypoadiponectinemia: a risk factor for metabolic syndrome,” Acta Medica Indonesiana, vol. 41, no. 1, pp. 20–24, 2009.
[30]
S. A. Isezuo and E. Ezunu, “Demographic and clinical correlates of metabolic syndrome in native African type-2 diabetic patients,” Journal of the National Medical Association, vol. 97, no. 4, pp. 557–563, 2005.
[31]
P. Zimmet, G. K. M. M. Alberti, F. Kaufman et al., “The metabolic syndrome in children and adolescents—an IDF consensus report,” Pediatric Diabetes, vol. 8, no. 5, pp. 299–306, 2007.
[32]
C. L. Jennings, E. V. Lambert, M. Collins, Y. Joffe, N. S. Levitt, and J. H. Goedecke, “Determinants of insulin-resistant phenotypes in normal-weight and obese black african women,” Obesity, vol. 16, no. 7, pp. 1602–1609, 2008.
[33]
A. M. J. Wassink, Y. Van Der Graaf, S. S. Soedamah-Muthu, W. Spiering, and F. L. J. Visseren, “Metabolic syndrome and incidence of type 2 diabetes in patients with manifest vascular disease,” Diabetes and Vascular Disease Research, vol. 5, no. 2, pp. 114–122, 2008.
[34]
K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009.
[35]
S. J. Kim-Dorner, P. A. Deuster, S. A. Zeno, A. T. Remaley, and M. Poth, “Should triglycerides and the triglycerides to high-density lipoprotein cholesterol ratio be used as surrogates for insulin resistance?” Metabolism, vol. 59, no. 2, pp. 299–304, 2010.
[36]
A. E. Sumner, K. B. Finley, D. J. Genovese, M. H. Criqui, and R. C. Boston, “Fasting triglyceride and the triglyceride-HDL cholesterol ratio are not markers of insulin resistance in African Americans,” Archives of Internal Medicine, vol. 165, no. 12, pp. 1395–1400, 2005.
[37]
A. E. Sumner, J. Zhou, A. Doumatey et al., “Low HDL-cholesterol with normal triglyceride levels is the most common lipid pattern in West Africans and African Americans with Metabolic Syndrome: implications for cardiovascular disease prevention,” CVD Prevention and Control, vol. 5, no. 3, pp. 75–80, 2010.
[38]
G. Mancia, G. Parati, C. Borghi et al., “Hypertension prevalence, awareness, control and association with metabolic abnormalities in the San Marino population: the SMOOTH study,” Journal of Hypertension, vol. 24, no. 5, pp. 837–843, 2006.
[39]
A. L. Martiniuk, C. M. Lee, C. M. M. Lawes et al., “Hypertension: its prevalence and population-attributable fraction for mortality from cardiovascular disease in the Asia-Pacific region,” Journal of Hypertension, vol. 25, no. 1, pp. 73–79, 2007.
[40]
G. Mancia, M. Bombelli, G. Corrao et al., “Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis,” Hypertension, vol. 49, no. 1, pp. 40–47, 2007.
[41]
E. Oda, “The metabolic syndrome (emperor) wears no clothes,” Diabetes Care, vol. 29, no. 11, pp. 2566–2567, 2006.
[42]
J. K. Y. Li, M. C. Y. Ng, W. Y. So et al., “Phenotypic and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus,” Diabetes/Metabolism Research and Reviews, vol. 22, no. 1, pp. 46–52, 2006.
[43]
A. Masoom, I. Pims, and S. Tareen, “Metabolic syndrome in non-diabetic first degree relatives of type 2 diabetic patients,” Annals of Pakistan Institute of Medical Sciences, vol. 7, no. 2, pp. 65–71, 2010.
[44]
A. Ghosh, T. Liu, M. J. Khoury, and R. Valdez, “Family history of diabetes and prevalence of the metabolic syndrome in U.S. adults without diabetes: 6-year results from the national health and nutrition examination survey (1999-2004),” Public Health Genomics, vol. 13, no. 6, pp. 353–359, 2010.
[45]
M. Das, S. Pal, and A. Ghosh, “Family history of type 2 diabetes and prevalence of metabolic syndrome in adult Asian Indians,” Journal of Cardiovascular Disease Research, vol. 3, no. 2, pp. 104–108, 2012.
[46]
J. Lidfeldt, P. Nyberg, C. Nerbrand, G. Samsioe, B. Scherstén, and C. D. Agardh, “Socio-demographic and psychosocial factors are associated with features of the metabolic syndrome. The Women's Health in the Lund Area (WHILA) study,” Diabetes, Obesity and Metabolism, vol. 5, no. 2, pp. 106–112, 2003.
[47]
M. H. Kim, M. K. Kim, B. Y. Choi, and Y. J. Shin, “Educational disparities in the metabolic syndrome in a rapidly changing society—the case of South Korea,” International Journal of Epidemiology, vol. 34, no. 6, pp. 1266–1273, 2005.
[48]
S. P. Wamala, J. Lynch, M. Horsten, M. A. Mittleman, K. Schenck-Gustafsson, and K. Orth-Gomer, “Education and the metabolic syndrome in women,” Diabetes Care, vol. 22, no. 12, pp. 1999–2003, 1999.
[49]
A. K. Khuwaja and M. M. Kadir, “Gender differences and clustering pattern of behavioural risk factors for chronic non-communicable diseases: community-based study from a developing country,” Chronic Illness, vol. 6, no. 3, pp. 163–170, 2010.