全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigating the Relationship between Topology and Evolution in a Dynamic Nematode Odor Genetic Network

DOI: 10.1155/2012/548081

Full-Text   Cite this paper   Add to My Lib

Abstract:

The relationship between biological network architectures and evolution is unclear. Within the phylum nematoda olfaction represents a critical survival tool. For nematodes, olfaction contributes to multiple processes including the finding of food, hosts, and reproductive partners, making developmental decisions, and evading predators. Here we examine a dynamic nematode odor genetic network to investigate how divergence, diversity, and contribution are shaped by network topology. Our findings describe connectivity frameworks and characteristics that correlate with molecular evolution and contribution across the olfactory network. Our data helps guide the development of a robust evolutionary description of the nematode odor network that may eventually aid in the prediction of interactive and functional qualities of novel nodes. 1. Introduction For nematodes, olfaction is a central mode of survival. Olfaction contributes to the finding of food, hosts, reproductive partners, in the making of developmental decisions, and to the evasion from predators. Studies into the olfactory system of the model nematode Caenorhabditis elegans have yielded detailed descriptions of the molecular and cellular pathways that subserve the olfactory system [1–4]. These signaling pathways appear highly conserved across very divergent nematode species, and the sensory neurons have clear anatomical orthologs in distantly related nematodes [5]. Within the olfactory system of C. elegans, the ability to detect dilute volatile odors is mostly conferred by three pairs of neurons termed the Amphid Wing cells type A (AWA), Amphid Wing cells type B (AWB), and the Amphid Wing cells type C (AWC) [3, 4]. These cells are primary sensory neurons located within the sensory amphid organ of the head that forms part of an anatomically distinct subclass of amphid neurons in that they do not extend processes through the amphid opening, but instead their distal ciliated endings terminate inside a glial sheath cell [6]. Here we describe a composite odor genetic network in C. elegans that encompasses all three pairs of volatile odor-detecting neurons. We used this network to identify orthologous genes of the odor network in the nematode Pristionchus pacificus. We chose the nematode P. pacificus based upon three criteria: (1) it exhibits a similar lifestyle to that of C. elegans, in that they are both self-fertilizing hermaphrodites that will feed on bacteria, (2) conservation of the olfactory signaling pathway of P. pacificus to C. elegans has been validated experimentally [7, 8], and (3) because it is

References

[1]  S. Ward, “Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 3, pp. 817–821, 1973.
[2]  D. B. Dusenbery, “Countercurrent separation: a new method for studying behavior of small aquatic organisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 5, pp. 1349–1352, 1973.
[3]  C. I. Bargmann and H. R. Horvitz, “Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans,” Neuron, vol. 7, no. 5, pp. 729–742, 1991.
[4]  C. I. Bargmann, E. Hartwieg, and H. R. Horvitz, “Odorant-selective genes and neurons mediate olfaction in C. elegans,” Cell, vol. 74, no. 3, pp. 515–527, 1993.
[5]  A. O. W. Stretton, R. E. Davis, and J. D. Angstadt, “Neural control of behaviour in Ascaris,” Trends in Neurosciences, vol. 8, no. 6, pp. 294–300, 1985.
[6]  L. A. Perkins, E. M. Hedgecock, J. N. Thomson, and J. G. Culotti, “Mutant sensory cilia in the nematode Caenorhabditis elegans,” Developmental Biology, vol. 117, no. 2, pp. 456–487, 1986.
[7]  S. M. Kroetz, J. Srinivasan, J. Yaghoobian, P. W. Sternberg, and R. L. Hong, “The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus,” PLoS ONE, vol. 7, no. 4, Article ID e34464, 2012.
[8]  R. L. Hong, H. Witte, and R. J. Sommer, “Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 22, pp. 7779–7784, 2008.
[9]  C. Dieterich, S. W. Clifton, L. N. Schuster et al., “The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism,” Nature Genetics, vol. 40, no. 10, pp. 1193–1198, 2008.
[10]  R. J. Sommer, “Pristionchus pacificus,” WormBook, vol. 14, pp. 1–8, 2006.
[11]  S. Kryazhimskiy and J. B. Plotkin, “The population genetics of dN/dS,” PLoS Genetics, vol. 4, no. 12, Article ID e1000304, 2008.
[12]  G. ?stlund, T. Schmitt, K. Forslund et al., “Inparanoid 7: new algorithms and tools for eukaryotic orthology analysis,” Nucleic Acids Research, vol. 38, no. 1, pp. D196–D203, 2009.
[13]  L. Li, C. J. Stoeckert Jr., and D. S. Roos, “OrthoMCL: identification of ortholog groups for eukaryotic genomes,” Genome Research, vol. 13, no. 9, pp. 2178–2189, 2003.
[14]  A. Schneider, C. Dessimoz, and G. H. Gonnet, “OMA Browser—exploring orthologous relations across 352 complete genomes,” Bioinformatics, vol. 23, no. 16, pp. 2180–2182, 2007.
[15]  K. Yook, T. W. Harris, T. Bieri et al., “WormBase 2012: more genomes, more data, new website,” Nucleic Acids Research, vol. 40, no. D1, pp. D735–D741, 2012.
[16]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[17]  R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp. 1792–1797, 2004.
[18]  S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003.
[19]  Z. Yang and R. Nielsen, “Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models,” Molecular Biology and Evolution, vol. 17, no. 1, pp. 32–43, 2000.
[20]  Z. Yang, “PAML: a program package for phylogenetic analysis by maximum likelihood,” Computer Applications in the Biosciences, vol. 13, no. 5, pp. 555–556, 1997.
[21]  P. Librado and J. Rozas, “DnaSP v5: a software for comprehensive analysis of DNA polymorphism data,” Bioinformatics, vol. 25, no. 11, pp. 1451–1452, 2009.
[22]  P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003.
[23]  E. R. Troemel, B. E. Kimmel, and C. I. Bargmann, “Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans,” Cell, vol. 91, no. 2, pp. 161–169, 1997.
[24]  H. A. Colbert and C. I. Bargmann, “Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans,” Neuron, vol. 14, no. 4, pp. 803–812, 1995.
[25]  N. D. L'Etoile, C. M. Coburn, J. Eastham, A. Kistler, G. Gallegos, and C. I. Bargmann, “The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans,” Neuron, vol. 36, no. 6, pp. 1079–1089, 2002.
[26]  K. Roayaie, J. G. Crump, A. Sagasti, and C. I. Bargmann, “The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons,” Neuron, vol. 20, no. 1, pp. 55–67, 1998.
[27]  D. M. Ferkey, R. Hyde, G. Haspel et al., “C. elegans G protein regulator RGS-3 controls sensitivity to sensory stimuli,” Neuron, vol. 53, no. 1, pp. 39–52, 2007.
[28]  D. A. Birnby, E. M. Link, J. J. Vowels, H. Tian, P. L. Colacurcio, and J. H. Thomas, “A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans,” Genetics, vol. 155, no. 1, pp. 85–104, 2000.
[29]  M. Matsuki, H. Kunitomo, and Y. Iino, “Goα regulates olfactory adaptation by antagonizing G qα-DAG signaling in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 1112–1117, 2006.
[30]  W. M. Nuttley, S. Harbinder, and D. van der Kooy, “Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans,” Learning and Memory, vol. 8, no. 3, pp. 170–181, 2001.
[31]  N. D. L'Etoile and C. I. Bargmann, “Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1,” Neuron, vol. 25, no. 3, pp. 575–586, 2000.
[32]  J. Y. Sze and G. Ruvkun, “Activity of the Caenorhabditis elegans UNC-86 POU transcription factor modulates olfactory sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9560–9565, 2003.
[33]  C. M. Coburn and C. I. Bargmann, “A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans,” Neuron, vol. 17, no. 4, pp. 695–706, 1996.
[34]  S. A. Daniels, M. Ailion, J. H. Thomas, and P. Sengupta, “egl-4 Acts through a transforming growth factor-β/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues,” Genetics, vol. 156, no. 1, pp. 123–141, 2000.
[35]  G. Jansen, K. L. Thijssen, P. Werner, M. van der Horst, E. Hazendonk, and R. H. A. Plasterk, “The complete family of genes encoding G proteins of Caenorhabditis elegans,” Nature Genetics, vol. 21, no. 4, pp. 414–419, 1999.
[36]  H. Lans, S. Rademakers, and G. Jansen, “A network of stimulatory and inhibitory Gα-subunits regulates olfaction in Caenorhabditis elegans,” Genetics, vol. 167, no. 4, pp. 1677–1687, 2004.
[37]  A. Palmitessa, H. A. Hess, I. A. Bany, Y. M. Kim, M. R. Koelle, and J. L. Benovic, “Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 24649–24662, 2005.
[38]  A. Kuhara, H. Inada, I. Katsura, and I. Mori, “Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6,” Neuron, vol. 33, no. 5, pp. 751–763, 2002.
[39]  H. Komatsu, I. Mori, J. S. Rhee, N. Akaike, and Y. Ohshima, “Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans,” Neuron, vol. 17, no. 4, pp. 707–718, 1996.
[40]  K. G. Miller, M. D. Emerson, and J. B. Rand, “G(o)α and diacylglycerol kinase negatively regulate the G(q)α pathway in C. elegans,” Neuron, vol. 24, no. 2, pp. 323–333, 1999.
[41]  R. Y. N. Lee, E. R. Sawin, M. Chalfie, H. R. Horvitz, and L. Avery, “EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans,” Journal of Neuroscience, vol. 19, no. 1, pp. 159–167, 1999.
[42]  M. D. Rausher, R. E. Miller, and P. Tiffin, “Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway,” Molecular Biology and Evolution, vol. 16, no. 2, pp. 266–274, 1999.
[43]  H. Ramsay, L. H. Rieseberg, and K. Ritland, “The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis,” Molecular Biology and Evolution, vol. 26, no. 5, pp. 1045–1053, 2009.
[44]  D. Waxman and J. R. Peck, “Pleiotropy and the preservation of perfection,” Science, vol. 279, no. 5354, pp. 1210–1213, 1998.
[45]  T. B. Sackton, B. P. Lazzaro, T. A. Schlenke, J. D. Evans, D. Hultmark, and A. G. Clark, “Dynamic evolution of the innate immune system in Drosophila,” Nature Genetics, vol. 39, no. 12, pp. 1461–1468, 2007.
[46]  R. Jovelin, J. P. Dunham, F. S. Sung, and P. C. Phillips, “High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in Caenorhabditis,” Genetics, vol. 181, no. 4, pp. 1387–1397, 2009.
[47]  S. Wuchty, “Evolution and topology in the yeast protein interaction network,” Genome Research, vol. 14, no. 7, pp. 1310–1314, 2004.
[48]  H. B. Fraser, A. E. Hirsh, L. M. Steinmetz, C. Scharfe, and M. W. Feldman, “Evolutionary rate in the protein interaction network,” Science, vol. 296, no. 5568, pp. 750–752, 2002.
[49]  D. M. O'Halloran, D. A. Fitzpatrick, G. P. McCormack, J. O. McInerney, and A. M. Burnell, “The molecular phylogeny of a nematode-specific clade of heterotrimeric G-protein α-subunit genes,” Journal of Molecular Evolution, vol. 63, no. 1, pp. 87–94, 2006.
[50]  D. A. Fitzpatrick, D. M. O'Halloran, and A. M. Burnell, “Multiple lineage specific expansions within the guanylyl cyclase gene family,” BMC Evolutionary Biology, vol. 6, article 26, 2006.
[51]  S. Yu, L. Avery, E. Baude, and D. L. Garbers, “Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3384–3387, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133