%0 Journal Article %T Investigating the Relationship between Topology and Evolution in a Dynamic Nematode Odor Genetic Network %A David A. Fitzpatrick %A Damien M. O'Halloran %J International Journal of Evolutionary Biology %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/548081 %X The relationship between biological network architectures and evolution is unclear. Within the phylum nematoda olfaction represents a critical survival tool. For nematodes, olfaction contributes to multiple processes including the finding of food, hosts, and reproductive partners, making developmental decisions, and evading predators. Here we examine a dynamic nematode odor genetic network to investigate how divergence, diversity, and contribution are shaped by network topology. Our findings describe connectivity frameworks and characteristics that correlate with molecular evolution and contribution across the olfactory network. Our data helps guide the development of a robust evolutionary description of the nematode odor network that may eventually aid in the prediction of interactive and functional qualities of novel nodes. 1. Introduction For nematodes, olfaction is a central mode of survival. Olfaction contributes to the finding of food, hosts, reproductive partners, in the making of developmental decisions, and to the evasion from predators. Studies into the olfactory system of the model nematode Caenorhabditis elegans have yielded detailed descriptions of the molecular and cellular pathways that subserve the olfactory system [1¨C4]. These signaling pathways appear highly conserved across very divergent nematode species, and the sensory neurons have clear anatomical orthologs in distantly related nematodes [5]. Within the olfactory system of C. elegans, the ability to detect dilute volatile odors is mostly conferred by three pairs of neurons termed the Amphid Wing cells type A (AWA), Amphid Wing cells type B (AWB), and the Amphid Wing cells type C (AWC) [3, 4]. These cells are primary sensory neurons located within the sensory amphid organ of the head that forms part of an anatomically distinct subclass of amphid neurons in that they do not extend processes through the amphid opening, but instead their distal ciliated endings terminate inside a glial sheath cell [6]. Here we describe a composite odor genetic network in C. elegans that encompasses all three pairs of volatile odor-detecting neurons. We used this network to identify orthologous genes of the odor network in the nematode Pristionchus pacificus. We chose the nematode P. pacificus based upon three criteria: (1) it exhibits a similar lifestyle to that of C. elegans, in that they are both self-fertilizing hermaphrodites that will feed on bacteria, (2) conservation of the olfactory signaling pathway of P. pacificus to C. elegans has been validated experimentally [7, 8], and (3) because it is %U http://www.hindawi.com/journals/ijeb/2012/548081/