全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimising multistage dairy cattle breeding schemes including genomic selection using decorrelated or optimum selection indices

DOI: 10.1186/1297-9686-44-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

A grid search was applied in order to identify optimum breeding plans to maximise the genetic gain per year in a multistage, multipath dairy cattle breeding program. In this program, different values of the accuracy of estimated genomic breeding values and of their costs per individual were applied, whereby the total breeding costs were restricted. Both decorrelated indices and optimum selection indices were used together with fast multidimensional integration algorithms to produce results.In comparison to optimum indices, the genetic gain with decorrelated indices was up to 40% less and the proportion of individuals undergoing genomic selection was different. Additionally, the interaction between selection paths was counter-intuitive and difficult to interpret. Independent of using decorrelated or optimum selection indices, genomic selection replaced traditional progeny testing when maximising the genetic gain per year, as long as the accuracy of estimated genomic breeding values was ≥ 0.45. Overall breeding costs were mainly generated in the path "dam-sire". Selecting males was still the main source of genetic gain per year.Decorrelated selection indices should not be used because of misleading results and the availability of accurate and fast algorithms for exact multidimensional integration. Genomic selection is the method of choice when maximising the genetic gain per year but genotyping females may not allow for a reduction in overall breeding costs. Furthermore, the economic justification of genotyping females remains questionable.Genomic selection (GS) offers breeders the opportunity to reduce costs, decrease the generation interval [1] and possibly avoid inbreeding [2]. GS is based on the prediction of breeding values from individual genotypes (estimated genomic breeding values, GEBV). These genotypes consist of a large number of DNA markers in the form of single nucleotide polymorphisms (SNP), which are in linkage disequilibrium with quantitative trait loc

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133