全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model

DOI: 10.1186/1297-9686-42-27

Full-Text   Cite this paper   Add to My Lib

Abstract:

Data of three purebred White Leghorn layer lines from Institut de Sélection Animale B.V., a Hendrix Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to estimate genetic parameters for social effects on observed survival days.Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross validation showed that social genetic effects contribute to a large difference in survival days between two extreme groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to cannibalism in laying hens.Mortality due to cannibalism in laying hens is a worldwide economic, health, and welfare problem, occurring in all types of commercial poultry housing systems [1]. Due to the likely prohibition of beak-trimming in the European Union in the near future, this problem will increase if no further actions are taken, and, therefore, needs to be solved urgently.One of the possibilities is to use genetic selection [2,3]. However, selection for lower mortality has not been very effective in most cases [4].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133