全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

DOI: 10.3390/s120810067

Keywords: CMOS, image sensor, low power, snapshot, SNR, strong inversion, sub-threshold, wide dynamic range

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

References

[1]  Fish, A.; Yadid-Pecht, O. Low-Power Smart CMOS Image Sensors. Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 1408–1411.
[2]  Chae, Y.; Cheon, J.; Lim, S.; Lee, D.; Kwon, M.; Yoo, K.; Jung, W.; Lee, D.-H.; Ham, S.; Han, G. A 2.1Mpixel 120frame/s CMOS Image Sensor with Column-parallel ΔΣ ADC Architecture. Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp. 394–395.
[3]  Hanson, S.; Zhi, Y.F.; Blaauw, D.; Sylvester, D. A 0.5 V sub-microwatt CMOS image sensor with pulse-width modulation read-out. J. IEEE Solid-State Circuit. 2010, 45, 759–767, doi:10.1109/JSSC.2010.2040231.
[4]  Cho, K.; Lee, D.; Lee, J.; Han, G. Sub-1-V CMOS image sensor using time-based readout circuit. IEEE Trans. Electron Devices 2010, 57, 222–227, doi:10.1109/TED.2009.2035194.
[5]  Ignjatovic, Z.; Maricic, D.; Bocko, M.F. Low power, high dynamic range CMOS image sensor employing pixel-level oversampling ΣΔ analog-to-digital conversion. IEEE Sens. J. 2012, 12, 737–746, doi:10.1109/JSEN.2011.2158818.
[6]  Belenky, A.; Fish, A.; Spivak, A.; Yadid-Pecht, O. A snapshot CMOS image sensor with extended dynamic range. IEEE Sens. J. 2009, 9, 103–111, doi:10.1109/JSEN.2008.2011073.
[7]  Lim, S.; Lee, J.; Kim, D.; Han, G. A High-Speed CMOS image sensor with column-parallel two-step single-slope ADCs. IEEE Trans. Electron Devices 2009, 56, 393–398, doi:10.1109/TED.2008.2011846.
[8]  Dongsoo, K.D.; Fu, Z.-m.; Joon, H.P.; Culurciello, E. A 1-mW CMOS temporal-difference AER sensor for wireless sensor networks. IEEE Trans. Electron Devices 2009, 56, 2586–2593, doi:10.1109/TED.2009.2030591.
[9]  Lin, J.-F.; Chang, S.-J.; Chiu, C.-F.; Tsai, H.-H.; Wang, J.-J. Low-Power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS image sensor application. IEEE Sens. J. 2009, 9, 2044–2054, doi:10.1109/JSEN.2009.2033198.
[10]  Xu, C.; Ki, W.-H.; Chan, M. A low-voltage CMOS Complementary Active Pixel Sensor (CAPS) fabricated using a 0.25 μm CMOS technology. IEEE Electron. Device Lett. 2002, 23, 398–400, doi:10.1109/LED.2002.1015213.
[11]  Fish, A.; Hamami, S.; Yadid-Pecht, O. CMOS Image Sensors with Self-Powered Generation Capability. IEEE Trans. Circuit. Syst-II: Express Briefs 2006, 53, 1210–1214, doi:10.1109/TCSII.2006.882858.
[12]  Tang, F.; Bermak, A. An 84 pW/Frame per pixel current-mode CMOS image sensor with energy harvesting capability. IEEE Sens. J. 2012, 12, 720–726, doi:10.1109/JSEN.2011.2138128.
[13]  Yadid-Pecht, O.; Belenky, A. In-pixel autoexposure CMOS APS. IEEE J. Solid-State Circuit. 2003, 38, 1425–1428, doi:10.1109/JSSC.2003.811984.
[14]  Wang, A.; Calhoun, H.B.; Chandrakasan, A. Sub-Threshold Design for Ultra Low-Power Systems; Springer: New York, NY, USA, 2006.
[15]  Calhoun, B.H.; Chandrakasan, A.P. A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid State Circuit. 2007, 42, 680–688, doi:10.1109/JSSC.2006.891726.
[16]  Kim, T.-H.; Liu, J.; Kim, C.H. An 8T Subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement. Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19 September 2007; pp. 241–244.
[17]  Verma, N.; Chandrakasan, A.P. A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuit. 2008, 43, 141–149, doi:10.1109/JSSC.2007.908005.
[18]  Kim, T.H.; Keane, J.; Eom, H.; Kim, C.H. Utilizing Reverse Short-Channel Effect for Optimal Subthreshold Circuit Design. IEEE Trans. Very Large Scale Integr. 2007, 15, 821–829, doi:10.1109/TVLSI.2007.899239.
[19]  Nambu, H.; Kanetani, K.; Yamasaki, K.; Higeta, K.; Usami, M.; Kusunoki, T.; Yamaguchi, K.; Homma, N. A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM. IEEE J. Solid-State Circuit. 1998, 33, 1650–1658, doi:10.1109/4.726553.
[20]  Spivak, A.; Belenky, A.; Fish, A.; Yadid-Pecht, O. Wide-Dynamic-Range CMOS image sensors-comparative performance analysis. IEEE Trans. Electron. Devices 2009, 56, 2446–2461, doi:10.1109/TED.2009.2030599.
[21]  Lin, Z.; Hoffman, M.W.; Schemm, N.; Leon-Salas, W.D.; Balkir, S. A CMOS image sensor for multi-level focal plane image decomposition. IEEE Trans. Circuit. Syst. 2008, 55, 2561–2572, doi:10.1109/TCSI.2008.920094.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133