We have developed a wireless biosensor system to continuously monitor L-lactic acid concentrations in fish. The blood L-lactic acid level of fish is a barometer of stress. The biosensor comprised Pt-Ir wire (φ0.178 mm) as the working electrode and Ag/AgCl paste as the reference electrode. Lactate oxidase was immobilized on the working electrode using glutaraldehyde. The sensor calibration was linear and good correlated with L-lactic acid levels (R = 0.9959) in the range of 0.04 to 6.0 mg·dL?1. We used the eyeball interstitial sclera fluid (EISF) as the site of sensor implantation. The blood L-lactic acid levels correlated closely with the EISF L-lactic acid levels in the range of 3 to 13 mg·dL?1 (R = 0.8173, n = 26). Wireless monitoring of L-lactic acid was performed using the sensor system in free-swimming fish in an aquarium. The sensor response was stable for over 60 h. Thus, our biosensor provided a rapid and convenient method for real-time monitoring of L-lactic acid levels in fish.
References
[1]
Maita, M.; Aoki, H.; Yamagata, Y.; Satoh, S.; Okamoto, N.; Watanabe, T. Plasma biochemistry and disease resistance in yellowtail fed a non-fish meal diet. Fish Pathol. 1998, 33, 53–58, doi:10.3147/jsfp.33.53.
[2]
Maita, M.; Satoh, K.; Fukuda, Y.; Lee, H.K.; Winton, J.R.; Okamoto, N. Correlation between plasma component levels of cultured fish and disease resistance to bacterial infection. Fish Pathol. 1998, 33, 129–133, doi:10.3147/jsfp.33.129.
[3]
Kamalaveni, K.; Gopal, V.; Sampson, U.; Aruna, D. Recycling and utilization of metabolic wastes for energy production is an index of biochemical adaptation of fish under environmental pollution stress. Environ. Monit. Assess. 2003, 86, 255–264, doi:10.1023/A:1024009505008. 12858966
[4]
Ramakritinan, C.M.; Kumaraguru, A.K.; Balasubramanian, M.P. Impact of distillery effluent on carbohydrate metabolism of freshwater fish, Cyprinus carpio. Ecotoxicology 2005, 14, 693–707, doi:10.1007/s10646-005-0019-3. 16151610
[5]
Hur, J.W.; Park, I.S.; Chang, Y.J. Physiological responses of the olive flounder, Paralichthys olivaceus, to a series stress during the transportation process. Ichthyol Res. 2007, 54, 32–37, doi:10.1007/s10228-006-0370-2.
Endo, H.; Yonemori, Y.; Musiya, K.; Maita, M.; Shibuya, T.; Ren, H.; Hayashi, T.; Mitsubayashi, K. A needle-type optical enzyme sensor system for determining glucose levels in fish blood. Anal. Chim. Acta. 2006.
[8]
Yonemori, Y.; Takahashi, E.; Ren, H.; Hayashi, T.; Endo, H. Biosensor system for continuous glucose monitoring in fish. Anal. Chim. Acta 2009, 633, 90–96, doi:10.1016/j.aca.2008.11.023. 19110121
[9]
Endo, H.; Yonemori, Y.; Hibi, K.; Ren, H.; Hayashi, T.; Tsugawa, W.; Sode, K. Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish. Biosens. Bioelectron. 2009, 24, 1417–1423, doi:10.1016/j.bios.2008.08.038. 18929477
[10]
Endo, H.; Takahashi, E.; Murata, M.; Ohnuki, H.; Ren, H.; Tsugawa, W.; Sode, K. Wireless monitoring of blood glucose levels in flatfish with a needle biosensor. Fish Sci. 2010, 76, 687–694, doi:10.1007/s12562-010-0256-0.
[11]
Yoneyama, Y.; Yonemori, Y.; Murata, M.; Ohnuki, H.; Hibi, K.; Hayashi, T.; Ren, H.; Endo, H. Wireless biosensor system for real-time cholesterol monitoring in fish “Nile tilapia”. Talanta 2009, 80, 909–915, doi:10.1016/j.talanta.2009.08.014. 19836572
[12]
Nolan, D.T.; Op't Veld, R.L.J.M.; Balm, P.H.M.; Wendelaar Bonga, S.E. Ambient salinity modulates the response of the tilapia. Oreochromis mossambicus (Peters), to net confinement. Aquaculture 1999, 177, 297–309, doi:10.1016/S0044-8486(99)00093-9.
[13]
Yoo, H.C.; Kim, H.S. Electrochemical characteristics of a carbon-based thick-film l-lactate biosensor using l-lactate dehydrogenase. Anal. Chim. Acta 1996, 336, 57–65, doi:10.1016/S0003-2670(96)00445-X.
[14]
Choleau, C.; Klein, J.C.; Reach, G.; Aussedat, B.; Demaria-Pesce, V.; Wilson, G.S.; Gifford, R.; Ward, W.K. Calibration of a subcutaneous amperometric glucose sensor. Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current. Biosens. Bioelectron. 2002, 17, 614–616.
[15]
Choleau, C.; Klein, J.C.; Reach, G.; Aussedat, B.; Demaria-Pesce, V.; Wilson, G.S.; Gifford, R.; Ward, W.K. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Biosens. Bioelectron. 2002, 17, 647–654, doi:10.1016/S0956-5663(01)00304-9. 12052350
[16]
Cs?regi, E.; Quinn, C.P.; Schmidtke, D.W.; Lindquist, S.E.; Pishko, M.V.; Ye, L.; Katakis, I.; Hubbell, J.A.; Heller, A. Desing, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Anal. Chem. 1994, 66, 3131–3138, doi:10.1021/ac00091a022. 7978306