全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2008 

Semi-Supervised Canonical Correlation Analysis Algorithm
半监督典型相关分析算法

Keywords: canonical correlation analysis,semi-supervised learning,pair-wise constraints,dimensionality reduction,classification
典型相关分析
,半监督学习,成对约束,降维,分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper,a semi-supervised canonical correlation analysis algorithm called Semi-CCA is developed, which uses supervision information in the form of pair-wise constraints in canonical correlation analysis (CCA).In this setting,besides abundant unlabeled data examples,the domain knowledge in the form of pair-wise constraints which specify whether a pair of data examples belongs to the same class (must-link constraints) or not (cannot-link constraints) is also available.Meanwhile,the relative importance of must-link constraints and cannot-link constraints is validated.Experimental results on the artificial dataset,multiple feature database and facial database including Yale and AR show that the proposed Semi-CCA can effectively enhance the classifier performance by using only a small amount of supervision information.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133