%0 Journal Article %T Semi-Supervised Canonical Correlation Analysis Algorithm
半监督典型相关分析算法 %A PENG Yan %A ZHANG Dao-Qiang %A
彭岩 %A 张道强 %J 软件学报 %D 2008 %I %X In this paper,a semi-supervised canonical correlation analysis algorithm called Semi-CCA is developed, which uses supervision information in the form of pair-wise constraints in canonical correlation analysis (CCA).In this setting,besides abundant unlabeled data examples,the domain knowledge in the form of pair-wise constraints which specify whether a pair of data examples belongs to the same class (must-link constraints) or not (cannot-link constraints) is also available.Meanwhile,the relative importance of must-link constraints and cannot-link constraints is validated.Experimental results on the artificial dataset,multiple feature database and facial database including Yale and AR show that the proposed Semi-CCA can effectively enhance the classifier performance by using only a small amount of supervision information. %K canonical correlation analysis %K semi-supervised learning %K pair-wise constraints %K dimensionality reduction %K classification
典型相关分析 %K 半监督学习 %K 成对约束 %K 降维 %K 分类 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=7735F413D429542E610B3D6AC0D5EC59&aid=AA45ED7C39D519DAE1FB618254226E06&yid=67289AFF6305E306&vid=2A8D03AD8076A2E3&iid=708DD6B15D2464E8&sid=B15E352F2A5F8899&eid=54C6FEE55FB2F876&journal_id=1000-9825&journal_name=软件学报&referenced_num=6&reference_num=28