全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

DOI: 10.3390/s111009300

Keywords: biosensor array, nanoparticle, conductometric sensor, microsensor array, glucose sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip.

References

[1]  Hierold, C; Jungen, A; Stampfer, C; Helbling, T. Nano electromechanical sensors based on carbon nanotubes. Sens. Actuat. A 2007, 136, 51–61, doi:10.1016/j.sna.2007.02.007.
[2]  Durkop, T; Getty, SA; Cobas, E; Fuhrer, MS. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 2004, 4, 35–39, doi:10.1021/nl034841q.
[3]  Kim, P; Shi, L; Majumdar, A; McEuen, PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 2001, 87, 215502:1–215502:4.
[4]  Bruchez, M, Jr; Moronne, M; Gin, P; Weiss, S; Alivisatos, AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016, doi:10.1126/science.281.5385.2013. 9748157
[5]  Wang, ZL; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246, doi:10.1126/science.1124005. 16614215
[6]  Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421–426, doi:10.1039/b414248a. 15846872
[7]  Thomas, JM; Raja, R. Nanopore and nanoparticle catalysts. Chem. Rec 2001, 1, 448–466, doi:10.1002/tcr.10003. 11933251
[8]  Lee, C-T; Chiu, Y-S; Ho, S-C; Lee, Y-J. Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor. Sensors 2011, 11, 4648–4655, doi:10.3390/s110504648. 22163867
[9]  Fang, B; Zhang, C; Wang, G; Wang, M; Ji, Y. A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sens. Actuat. B 2011, 155, 304–310, doi:10.1016/j.snb.2010.12.040.
[10]  Xu, X; Ren, G; Cheng, J; Liu, Q; Li, D; Chen, Q. Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications. J. Mater. Sci 2006, 41, 4974–4977, doi:10.1007/s10853-006-0118-4.
[11]  Crumbliss, AL; Perine, SC; Stonehuerner, J; Tubergen, KR; Zhao, J; Henkens, RW; O’Daly, JP. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol. Bioeng 1992, 40, 483–490, doi:10.1002/bit.260400406. 18601142
[12]  Rossi, LM; Quach, AD; Rosenzweig, Z. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem 2004, 380, 606–613, doi:10.1007/s00216-004-2770-3. 15448967
[13]  Chen, ZJ; Ou, XM; Tang, FQ; Jiang, L. Effect of nanometer particles on the adsorbability and enzymatic activity of glucose oxidase. Colloids Surf. B 1996, 7, 173–179, doi:10.1016/0927-7765(96)01291-X.
[14]  Qhobosheane, M; Santra, S; Zhang, P; Tan, W. Biochemically functionalized silica nanoparticles. Analyst 2001, 126, 1274–1278, doi:10.1039/b101489g. 11534592
[15]  Willner, I; Katz, E. Bioelectronics: From Theory to Applications; John Wiley & Sons, Ltd: New York, NY, USA, 2005.
[16]  Luo, X; Morrin, A; Killard, A; Smyth, M. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326, doi:10.1002/elan.200503415.
[17]  Lee, D; Cui, T. Layer-by-layer self-assembled single-walled carbon nanotubes based ion-sensitive conductometric glucose biosensors. IEEE Sens. J 2009, 9, 449–456, doi:10.1109/JSEN.2009.2014414.
[18]  Liu, Y; Erdman, AG; Cui, T. Acetylcholine biosensors based on layer-by-layer self-assembled polymer/nanoparticle ion-sensitive field-effect transistors. Sens. Actuat. A 2007, 136, 540–545, doi:10.1016/j.sna.2006.12.023.
[19]  Liu, Y; Cui, T. Ion-sensitive field-effect transistor based pH sensors using nano self-assembled polyelectrolyte/nanoparticle multilayer films. Sens. Actuat. B 2007, 123, 148–152, doi:10.1016/j.snb.2006.08.006.
[20]  Kosmulski, M. Pristine points of zero charge of gallium and indium oxides. J. Colloid Interface Sci 2001, 238, 225–227, doi:10.1006/jcis.2001.7484. 11350159
[21]  Lee, D; Cui, T. pH-dependent conductance behaviors of layer-by-layer self-assembled carboxylated carbon nanotube multilayer thin-film sensors. J. Vac. Sci. Technol. B 2009, 27, 842–848, doi:10.1116/1.3002386.
[22]  Shiratori, SS; Rubner, MF. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 2000, 33, 4213–4219, doi:10.1021/ma991645q.
[23]  Caruso, F; Lichtenfeld, H; Giersig, M; Mohwald, H. Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc 1998, 120, 8523–8524, doi:10.1021/ja9815024.
[24]  Franke, ME; Koplin, TJ; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50, doi:10.1002/smll.200500261. 17193551
[25]  Whitby, CP; Djerdjev, AM; Beattie, JK; Warr, GG. In situ determination of the size and polydispersity of concentrated emulsions. Langmuir 2006, 23, 1694–1700.
[26]  Raguse, B; Chow, E; Barton, CS; Wieczorek, L. Gold nanoparticle chemiresistor sensors: Direct sensing of organics in aqueous electrolyte solution. Anal. Chem 2007, 79, 7333–7339, doi:10.1021/ac070887i. 17722880
[27]  Lee, D; Cui, T. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosens. Bioelectron 2010, 25, 2259–2264, doi:10.1016/j.bios.2010.03.003. 20417088
[28]  Yan, J; Pedrosa, VA; Simonian, AL; Revzin, A. Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors. ACS Appl. Mater. Interfaces 2010, 2, 748–755, doi:10.1021/am9007819. 20356276

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133