全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Simplistic Attachment and Multispectral Imaging with Semiconductor Nanocrystals

DOI: 10.3390/s111110557

Keywords: quantum dot, nanocrystal, IHC, immunohistochemistry, spectral imaging, multiplexing, conjugation, antibody

Full-Text   Cite this paper   Add to My Lib

Abstract:

Advances in spectral deconvolution technologies are rapidly enabling researchers to replace or enhance traditional epifluorescence microscopes with instruments capable of detecting numerous markers simultaneously in a multiplexed fashion. While significantly expediting sample throughput and elucidating sample information, this technology is limited by the spectral width of common fluorescence reporters. Semiconductor nanocrystals (NC’s) are very bright, narrow band fluorescence emitters with great potential for multiplexed fluorescence detection, however the availability of NC’s with facile attachment chemistries to targeting molecules has been a severe limitation to the advancement of NC technology in applications such as immunocytochemistry and immunohistochemistry. Here we report the development of simple, yet novel attachment chemistries for antibodies onto NC’s and demonstrate how spectral deconvolution technology enables the multiplexed detection of 5 distinct NC-antibody conjugates with fluorescence emission wavelengths separated by as little as 20 nm.

References

[1]  Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol 2004, 22, 969–976, doi:10.1038/nbt994. 15258594
[2]  Mansfield, J.R.; Gossage, K.W.; Hoyt, C.C.; Levenson, R.M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt 2005, 10, 41207:1–41207:9.
[3]  Fountaine, T.J.; Wincovitch, S.M.; Geho, D.H.; Garfield, S.H.; Pittaluga, S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod. Pathol 2006, 19, 1181–1191, doi:10.1038/modpathol.3800628. 16778828
[4]  Tholouli, E.; Sweeney, E.; Barrow, E.; Clay, V.; Hoyland, J.; Byers, R. Quantum dots light up pathology. J. Pathol 2008, 216, 275–285, doi:10.1002/path.2421. 18814189
[5]  Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R. Quantitative multiplexed quantum dot immunohistochemistry. Biochem. Biophys. Res. Commun 2008, 374, 181–186, doi:10.1016/j.bbrc.2008.06.127. 18621021
[6]  Liu, J.; Lau, S.K.; Varma, V.A.; Moffitt, R.A.; Caldwell, M.; Liu, T.; Young, A.N.; Petros, J.A.; Osunkoya, A.O.; Krogstad, T.; Leyland-Jones, B.; Wang, M.D.; Nie, S. Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 2010, 4, 2755–2765, doi:10.1021/nn100213v. 20377268
[7]  Jennings, T.L.; Becker-Catania, S.G.; Triulzi, R.C.; Tao, G.; Scott, B.; Sapsford, K.E.; Spindel, S.; Oh, E.; Jain, V.; Delehanty, J.B.; Prasuhn, D.E.; Boeneman, K.; Algar, W.R.; Medintz, I.L. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano 2011, 5, 5579–5593, doi:10.1021/nn201050g. 21692444
[8]  Peng, C.W.; Liu, X.L.; Chen, C.; Liu, X.; Yang, X.Q.; Pang, D.W.; Zhu, X.B.; Li, Y. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 2011, 32, 2907–2917, doi:10.1016/j.biomaterials.2010.12.053. 21262536
[9]  Murphy, C.J. Optical sensing with quantum dots. Anal. Chem 2002, 74, 520A–526A. 12380801
[10]  Parak, W.J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S.C.; Boudreau, R.; Le Gros, M.A.; Larabell, C.A.; Alivisatos, A.P. Biological applications of colloidal nanocrystals. Nanotechnology 2003, 14, R15–R27, doi:10.1088/0957-4484/14/7/201.
[11]  Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol 2004, 22, 47–52, doi:10.1038/nbt927. 14704706
[12]  Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol 2003, 21, 41–46, doi:10.1038/nbt764. 12459735
[13]  Tokumasu, F.; Dvorak, J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J. Microsc 2003, 211, 256–261, doi:10.1046/j.1365-2818.2003.01219.x. 12950474
[14]  Nisman, R.; Dellaire, G.; Ren, Y.; Li, R.; Bazett-Jones, D.P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem 2004, 52, 13–18, doi:10.1177/002215540405200102. 14688213
[15]  Zahavy, E.; Freeman, E.; Lustig, S.; Keysary, A.; Yitzhaki, S. Double labeling and simultaneous detection of B- and T cells using fluorescent nano-crystal (q-dots) in paraffin-embedded tissues. J. Fluoresc 2005, 15, 661–665, doi:10.1007/s10895-005-2972-x. 16341782
[16]  Ghazani, A.A.; Lee, J.A.; Klostranec, J.; Xiang, Q.; Dacosta, R.S.; Wilson, B.C.; Tsao, M.S.; Chan, W.C.W. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett 2006, 6, 2881–2886, doi:10.1021/nl062111n. 17163724
[17]  Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K.Y.; Zhau, H.E.; Chung, L.W.; Petros, J.A.; O’Regan, R.M.; Yezhelyev, M.V.; Simons, J.W.; Wang, M.D.; Nie, S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc 2007, 2, 1152–1165, doi:10.1038/nprot.2007.107. 17546006
[18]  Liu, J.; Lau, S.K.; Varma, V.A.; Kairdolf, B.A.; Nie, S. Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal. Chem 2010, 82, 6237–6243, doi:10.1021/ac101065b. 20565106
[19]  Huang, D.; Peng, X.; Su, L.; Wang, D.; Khuri, F.; Shin, D.; Chen, Z. Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res 2010, 3, 61–68, doi:10.1007/s12274-010-1009-1.
[20]  Peng, X. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. A Eur. J 2002, 8, 334–339, doi:10.1002/1521-3765(20020118)8:2<334::AID-CHEM334>3.0.CO;2-T.
[21]  Peng, Z.A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc 2002, 124, 3343–3353, doi:10.1021/ja0173167. 11916419
[22]  Qu, L.; Peng, Z.A.; Peng, X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett 2001, 1, 333–337, doi:10.1021/nl0155532.
[23]  Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762, doi:10.1126/science.1077194. 12459582
[24]  Dirksen, A.; Dawson, P.E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem 2008, 19, 2543–2548, doi:10.1021/bc800310p. 19053314
[25]  Dirksen, A.; Hackeng, T.M.; Dawson, P.E. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. Engl 2006, 118, 7743–7746, doi:10.1002/ange.200602877.
[26]  Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem 2011, 22, 825–858, doi:10.1021/bc200065z. 21585205
[27]  Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl 2009, 48, 6974–6998, doi:10.1002/anie.200900942. 19714693
[28]  Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater 2003, 15, 2854–2860, doi:10.1021/cm034081k.
[29]  Parak, W.J.; Gerion, D.; Zanchet, D.; Woerz, A.S.; Pellegrino, T.; Micheel, C.; Williams, S.C.; Seitz, M.; Bruehl, R.E.; Bryant, Z.; Bustamante, C.; Bertozzi, C.R.; Alivisatos, A.P. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater 2002, 14, 2113–2119, doi:10.1021/cm0107878.
[30]  Derfus, A.M.; Chen, A.A.; Min, D.H.; Ruoslahti, E.; Bhatia, S.N. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem 2007, 18, 1391–1396, doi:10.1021/bc060367e. 17630789
[31]  Swift, J.L.; Heuff, R.; Cramb, D.T. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys. J 2006, 90, 1396–1410, doi:10.1529/biophysj.105.069526. 16299079
[32]  Lee, J.; Mardyani, S.; Hung, A.; Rhee, A.; Klostranec, J.; Mu, Y.; Li, D.; Chan, W. Toward the accurate read-out of quantum dot barcodes: Design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv. Mater 2007, 19, 3113–3118, doi:10.1002/adma.200701955.
[33]  Klostranec, J.M.; Xiang, Q.; Farcas, G.A.; Lee, J.A.; Rhee, A.; Lafferty, E.I.; Perrault, S.D.; Kain, K.C.; Chan, W.C.W. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 2007, 7, 2812–2818, doi:10.1021/nl071415m. 17705551
[34]  Hillman, E.M.C.; Amoozegar, C.B.; Wang, T.; McCaslin, A.F.H.; Bouchard, M.B.; Mansfield, J.; Levenson, R.M. In vivo optical imaging and dynamic contrast methods for biomedical research. Phil. Trans. A Math. Phys. Eng. Sci 2011, 369, 4620–4643, doi:10.1098/rsta.2011.0264.
[35]  Zhou, L.; El-Deiry, W.S. Multispectral fluorescence imaging. J. Nucl. Med 2009, 50, 1563–1566, doi:10.2967/jnumed.109.063925. 19759119

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133