Advances in spectral deconvolution technologies are rapidly enabling researchers to replace or enhance traditional epifluorescence microscopes with instruments capable of detecting numerous markers simultaneously in a multiplexed fashion. While significantly expediting sample throughput and elucidating sample information, this technology is limited by the spectral width of common fluorescence reporters. Semiconductor nanocrystals (NC’s) are very bright, narrow band fluorescence emitters with great potential for multiplexed fluorescence detection, however the availability of NC’s with facile attachment chemistries to targeting molecules has been a severe limitation to the advancement of NC technology in applications such as immunocytochemistry and immunohistochemistry. Here we report the development of simple, yet novel attachment chemistries for antibodies onto NC’s and demonstrate how spectral deconvolution technology enables the multiplexed detection of 5 distinct NC-antibody conjugates with fluorescence emission wavelengths separated by as little as 20 nm.
References
[1]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol 2004, 22, 969–976, doi:10.1038/nbt994. 15258594
[2]
Mansfield, J.R.; Gossage, K.W.; Hoyt, C.C.; Levenson, R.M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt 2005, 10, 41207:1–41207:9.
[3]
Fountaine, T.J.; Wincovitch, S.M.; Geho, D.H.; Garfield, S.H.; Pittaluga, S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod. Pathol 2006, 19, 1181–1191, doi:10.1038/modpathol.3800628. 16778828
[4]
Tholouli, E.; Sweeney, E.; Barrow, E.; Clay, V.; Hoyland, J.; Byers, R. Quantum dots light up pathology. J. Pathol 2008, 216, 275–285, doi:10.1002/path.2421. 18814189
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol 2004, 22, 47–52, doi:10.1038/nbt927. 14704706
[12]
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol 2003, 21, 41–46, doi:10.1038/nbt764. 12459735
[13]
Tokumasu, F.; Dvorak, J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J. Microsc 2003, 211, 256–261, doi:10.1046/j.1365-2818.2003.01219.x. 12950474
[14]
Nisman, R.; Dellaire, G.; Ren, Y.; Li, R.; Bazett-Jones, D.P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem 2004, 52, 13–18, doi:10.1177/002215540405200102. 14688213
[15]
Zahavy, E.; Freeman, E.; Lustig, S.; Keysary, A.; Yitzhaki, S. Double labeling and simultaneous detection of B- and T cells using fluorescent nano-crystal (q-dots) in paraffin-embedded tissues. J. Fluoresc 2005, 15, 661–665, doi:10.1007/s10895-005-2972-x. 16341782
[16]
Ghazani, A.A.; Lee, J.A.; Klostranec, J.; Xiang, Q.; Dacosta, R.S.; Wilson, B.C.; Tsao, M.S.; Chan, W.C.W. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett 2006, 6, 2881–2886, doi:10.1021/nl062111n. 17163724
[17]
Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K.Y.; Zhau, H.E.; Chung, L.W.; Petros, J.A.; O’Regan, R.M.; Yezhelyev, M.V.; Simons, J.W.; Wang, M.D.; Nie, S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc 2007, 2, 1152–1165, doi:10.1038/nprot.2007.107. 17546006
[18]
Liu, J.; Lau, S.K.; Varma, V.A.; Kairdolf, B.A.; Nie, S. Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal. Chem 2010, 82, 6237–6243, doi:10.1021/ac101065b. 20565106
[19]
Huang, D.; Peng, X.; Su, L.; Wang, D.; Khuri, F.; Shin, D.; Chen, Z. Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res 2010, 3, 61–68, doi:10.1007/s12274-010-1009-1.
[20]
Peng, X. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. A Eur. J 2002, 8, 334–339, doi:10.1002/1521-3765(20020118)8:2<334::AID-CHEM334>3.0.CO;2-T.
[21]
Peng, Z.A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc 2002, 124, 3343–3353, doi:10.1021/ja0173167. 11916419
[22]
Qu, L.; Peng, Z.A.; Peng, X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett 2001, 1, 333–337, doi:10.1021/nl0155532.
[23]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762, doi:10.1126/science.1077194. 12459582
[24]
Dirksen, A.; Dawson, P.E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem 2008, 19, 2543–2548, doi:10.1021/bc800310p. 19053314
Swift, J.L.; Heuff, R.; Cramb, D.T. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys. J 2006, 90, 1396–1410, doi:10.1529/biophysj.105.069526. 16299079
[32]
Lee, J.; Mardyani, S.; Hung, A.; Rhee, A.; Klostranec, J.; Mu, Y.; Li, D.; Chan, W. Toward the accurate read-out of quantum dot barcodes: Design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv. Mater 2007, 19, 3113–3118, doi:10.1002/adma.200701955.
[33]
Klostranec, J.M.; Xiang, Q.; Farcas, G.A.; Lee, J.A.; Rhee, A.; Lafferty, E.I.; Perrault, S.D.; Kain, K.C.; Chan, W.C.W. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 2007, 7, 2812–2818, doi:10.1021/nl071415m. 17705551
[34]
Hillman, E.M.C.; Amoozegar, C.B.; Wang, T.; McCaslin, A.F.H.; Bouchard, M.B.; Mansfield, J.; Levenson, R.M. In vivo optical imaging and dynamic contrast methods for biomedical research. Phil. Trans. A Math. Phys. Eng. Sci 2011, 369, 4620–4643, doi:10.1098/rsta.2011.0264.
[35]
Zhou, L.; El-Deiry, W.S. Multispectral fluorescence imaging. J. Nucl. Med 2009, 50, 1563–1566, doi:10.2967/jnumed.109.063925. 19759119