The aim of the present work was to investigate the feasibility of applying the molecular imprinting polymer technique to the detection of the mycotoxin deoxynivalenol (DON) using a surface plasmon resonance (SPR) transducer. A molecularly imprinted polypyrrole (MIPPy) film was prepared via electropolymerization of pyrrole onto a bare Au chip in the presence of a template DON molecule. Atomic force microscope SPR analysis showed that the MIPPy film was deposited homogeneously on the Au surface, with a thickness of 5 nm. The MIPPy–SPR sensor exhibited a linear response for the detection of DON in the range of 0.1–100 ng/mL (R2 = 0.988). The selectivity efficiency of the MIPPy film for DON and its acetylated analogs 3-ADON and 15-ADON was 100, 19, and 44%, respectively. The limit of detection for DON with the MIPPy–SPR for a standard solution was estimated at >1 ng/mL. These results suggest that the combination of SPR sensing with a MIPPy film as a synthetic receptor can be used to detect DON.
References
[1]
D’Mello, JPF; Placinta, CM; Macdonald, AMC. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Technol 1999, 80, 183–205, doi:10.1016/S0377-8401(99)00059-0.
[2]
Bullerman, LB; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol 2007, 119, 140–146, doi:10.1016/j.ijfoodmicro.2007.07.035. 17804104
[3]
Lancova, K; Hajslova, J; Kostelanska, M; Kohoutkova, J; Nedelnik, J; Moravcova, H; Vanova, M. Fate of trichothecene mycotoxins during the processing: Milling and baking. Food Addit. Contam 2008, 25, 650–659, doi:10.1080/02652030701660536.
[4]
Rotter, BA; Prelusky, DB; Pestka, JJ. Toxicology of desoxynivalenol (Vomitoxin). J. Toxicol Environ. Health 1996, 48, 1–34. 8637056
[5]
Ehling, G; Cockburn, A; Snowdon, P; Buchhaus, H. The significance of the Fusarium toxin deoxynivalenol (DON) for human and animal health. Cereal Res. Commun 1997, 25, 433–447.
[6]
FAO. Worldwide regulations for mycotoxins in food and feeds in 2003. In FAO Food and Nutrition Paper 81; Food and Agriculture Organization: Rome, Italy, 2004.
[7]
Pestka, JJ; Smolinski, AT. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol Environ. Health B 2005, 8, 39–69, doi:10.1080/10937400590889458.
[8]
Korea Food and Drug Administration. Food Code, Chapter 2; Korea Food and Drug Administration: Seoul, Korea, 2010.
[9]
International Union of Pure and Applied Chemistry (IUPAC). Harmonized guidelines for single laboratory validation of methods of analysis (IUPAC Technical report). Pure Appl. Chem 2002, 74, 835–855, doi:10.1351/pac200274050835.
[10]
Kl?tzel, M; Schmidt, S; Lauber, U; Humpf, HU. Determination of 12 type A and B trichothecenes in cereals by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Agric. Food Chem 2005, 53, 8904–8910, doi:10.1021/jf051501c. 16277381
[11]
Ok, HE; Chang, HJ; Choi, SW; Lee, N; Kim, HJ; Koo, MS; Chun, HS. Co-occurrence of deoxynivalenol and zearalenone in cereals and their products. Kor. J. Fd. Hyg. Safety 2007, 22, 375–381.
[12]
Krska, R; Baumgartner, S; Josephs, R. The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J. Anal. Chem 2001, 371, 285–299, doi:10.1007/s002160100992. 11688640
[13]
Sugita-Konsihi, Y; Tanaka, T; Tabata, S; Nakajima, M; Nouno, M; Nakaie, Y; Chonan, T; Aoyagi, M; Kibune, N; Mizuno, K; Ishikuro, E; Kanamaru, N; Minamisawa, M; Aita, N; Kushiro, M; Tanaka, K; Takatori, K. Validation of an HPLC analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol. Mycopathologia 2006, 161, 239–243, doi:10.1007/s11046-006-0260-1. 16552488
[14]
Schaafsma, AW; Nicol, RW; Savard, ME; Sinha, RC; Reid, LM; Rottinghaus, G. Analysis of Fusarium toxins in maize and wheat using thin layer chromatography. Mycopathologia 1998, 142, 107–113, doi:10.1023/A:1006937720711. 9926423
[15]
Tanaka, T; Yoneda, A; Inoue, S; Dugiura, Y; Ueno, Y. Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography—Mass spectrometry. J. Chromatogr. A 2000, 882, 23–28, doi:10.1016/S0021-9673(00)00063-7. 10895929
[16]
Taipa, MA. Immunoassays: Biological tools for high throughput screening and characterisation of combinatorial libraries. Comb. Chem. High Throughput Screen 2008, 11, 325–335, doi:10.2174/138620708784246031. 18473742
[17]
Van der Gaag, B; Spath, S; Dietrich, H; Stigter, E; Boonzaaijer, G; van Osenbruggen, T; Koopal, K. Biosensors and multiple mycotoxin analysis. Food Control 2003, 14, 251–254, doi:10.1016/S0956-7135(03)00008-2.
[18]
Schrader, T; Koch, S. Artificial protein sensors. Mol. Biosyst 2007, 3, 241–248, doi:10.1039/b614103j. 17372652
[19]
Wulff, G. Molecular imprinting. Ann. N. Y. Acad. Sci 1984, 434, 327–333, doi:10.1111/j.1749-6632.1984.tb29853.x.
[20]
Haupt, K. Molecularly imprinted polymers: The next generation. Anal. Chem 2003, 75, 376A–383A. 14632031
[21]
Choi, SW; Chang, HJ; Lee, N; Kim, JH; Chun, HS. Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR). Sens. J. Agric. Food Chem 2009, 57, 1113–1118, doi:10.1021/jf804022p.
[22]
Kim, SH; Choi, SW; Suh, HJ; Jin, SH; Gal, YS; Koh, K. Surface plasmon resonance spectroscopy on the interaction of a self-assembled monolayer with linear hydrocarbon such as pentane, hexane, heptane and octane. Dyes Pigments 2002, 55, 17–25, doi:10.1016/S0143-7208(02)00054-2.
[23]
Choi, SW; Jin, SH; Gal, YS; Kim, JH; Kim, SH; Koh, K. Solvent effect on photochromic UV-sensing of a self-assembled spiroxazine monolayer. Mol. Cryst. Liq. Cryst 2002, 377, 229–232.
[24]
Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev 2008, 108, 462–493, doi:10.1021/cr068107d. 18229953
[25]
Pattnaik, P. Surface plasmon resonance: Applications in understanding receptor-ligand interaction. Appl. Biochem. Biotechnol 2005, 126, 79–92, doi:10.1385/ABAB:126:2:079. 16118464
[26]
Jin, S; Liu, X; Zhang, W; Lu, Y; Xue, G. Electrochemical copolymerization of pyrrole and styrene. Macromolecules 2000, 33, 4805–4808, doi:10.1021/ma991679y.
[27]
Kim, SH; Ock, KS; Kim, JH; Koh, K; Kang, SW. Optical properties and molecular orientation of self-assembled monolayer using surface plasmon resonance spectroscopy. Dyes Pigments 2001, 48, 1–6, doi:10.1016/S0143-7208(00)00090-5.
[28]
Ebarvia, BS; Cabanilla, S; Sevilla, F, III. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole. Talanta 2005, 66, 145–152, doi:10.1016/j.talanta.2004.10.009. 18969974
[29]
Weiss, R; Freudenschuss, M; Krska, R; Mizaikoff, B. Improving methods of analysis for mycotoxins: molecularly imprinted polymers for deoxynivalenol and zearalenone. Food Addit. Contam 2003, 20, 386–395, doi:10.1080/0265203031000065827. 12775482
Maier, NM; Buttinger, G; Welhartizki, S; Gavioli, E; Lindner, W. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: Merits and limitations. J. Chromatogr. B 2004, 804, 103–111, doi:10.1016/j.jchromb.2004.01.014.
[32]
Maragos, CM; McCormick, SP. Monoclonal antibodies for the mycotoxins deoxynivalenol and 3-acetyl-deoxynivalenol. Food Agric. Immun 2000, 12, 181–192, doi:10.1080/09540100050140722.
Tangni, EK; Motte, JC; Callebaut, A; Pussemier, L. Cross-Reactivity of antibodies in some commercial deoxynivalenol test kits against some fusariotoxins. J. Agric. Food Chem 2010, 58, 12625–12633, doi:10.1021/jf103025e. 21087038
[35]
Schollenberger, M; Müller, HM; Rüfle, M; Suchy, S; Planck, S; Drochner, W. Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006, 161, 43–52, doi:10.1007/s11046-005-0199-7. 16389484
[36]
Ok, HE; Choi, SW; Chang, HJ; Chung, MS; Chun, HS. Occurrence of five 8-ketotrichothecene mycotoxins in organically and conventionally produced cereals collected in Korea. Food Control 2011, 22, 1647–1652, doi:10.1016/j.foodcont.2011.03.023.