全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum-inspired evolutionary tuning of SVM parameters
受限空间细水雾作用下烟气温度变化规律研究

Keywords: quantum-inspired evolutionary algorithm (QEA),parameters tuning,support vector machines (SVM),least squares support vector machines (LS-SVM)
细水雾
,烟气,温度,受限空间,细水雾,作用,火灾烟气,温度变化规律,设计参数,理论,三维数学模型,空间分布,数学关系,数据推导,利用实验,机理,烟气温度,水雾抑制,影响,降温速率,因素,水平距离,火源

Full-Text   Cite this paper   Add to My Lib

Abstract:

Common used parameters selection method for support vector machines (SVM) is cross-validation, which needs a long-time complicated calculation. In this paper, a novel regularization parameter and kernel parameter tuning approach of SVM is presented based on quantum-inspired evolutionary algorithm (QEA). QEA with quantum chromosome and quantum mutation has better global search capacity. The parameters of least squares support vector machines (LS-SVM) can be adjusted using quantum-inspired evolutionary optimization. Classification and function estimation are studied using LS-SVM with wavelet kernel and Gaussian kernel. The simulation results show that the proposed approach can effectively tune the parameters of LS-SVM , and the improved LS-SVM with wavelet kernel can provide better precision.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133