%0 Journal Article %T Quantum-inspired evolutionary tuning of SVM parameters
受限空间细水雾作用下烟气温度变化规律研究 %A Zhiyong Luo %A Ping Wang %A Yinguo Li %A Wenfeng Zhang %A Wei Tang %A Min Xiang %A
Zhiyong Luo %A Ping Wang %A Yinguo Li %A Wenfeng Zhang %A Wei Tang %A Min Xiang %J 自然科学进展 %D 2008 %I %X Common used parameters selection method for support vector machines (SVM) is cross-validation, which needs a long-time complicated calculation. In this paper, a novel regularization parameter and kernel parameter tuning approach of SVM is presented based on quantum-inspired evolutionary algorithm (QEA). QEA with quantum chromosome and quantum mutation has better global search capacity. The parameters of least squares support vector machines (LS-SVM) can be adjusted using quantum-inspired evolutionary optimization. Classification and function estimation are studied using LS-SVM with wavelet kernel and Gaussian kernel. The simulation results show that the proposed approach can effectively tune the parameters of LS-SVM , and the improved LS-SVM with wavelet kernel can provide better precision. %K quantum-inspired evolutionary algorithm (QEA) %K parameters tuning %K support vector machines (SVM) %K least squares support vector machines (LS-SVM)
细水雾 %K 烟气 %K 温度 %K 受限空间 %K 细水雾 %K 作用 %K 火灾烟气 %K 温度变化规律 %K 设计参数 %K 理论 %K 三维数学模型 %K 空间分布 %K 数学关系 %K 数据推导 %K 利用实验 %K 机理 %K 烟气温度 %K 水雾抑制 %K 影响 %K 降温速率 %K 因素 %K 水平距离 %K 火源 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=96E6E851B5104576C2DD9FC1FBCB69EF&jid=504AF8C1E5476CA7C4EC9DF6FEAC14AC&aid=3D558D35B6AD22136B1667398233CD56&yid=67289AFF6305E306&vid=13553B2D12F347E8&iid=E158A972A605785F&sid=D93AD940782892D0&eid=03436AC72A659ACA&journal_id=1002-008X&journal_name=自然科学进展&referenced_num=0&reference_num=10