|
计算数学 2000
QUADRATURE METHODS WITH HIGH ACCURACY AND EXTRAPOLATION FOR SOLVING BOUNDARY INTEGRAL EQUATIONS OF THE FIRST KIND
|
Abstract:
0.引言使用单层位势理论把Dirichlet问题:转化为具有对数核的边界积分方程:这里Г假设为简单光滑闭曲线.熟知,若Г的容度Cr≠1,(0.2)有唯一解存在[1].借助参数变换这里的数值解法有Galerkin法[2],配置法[3],和谱方法~[4],这些方法有一个共同缺点就是矩阵元素的生成要计算反常积分,由于离散方程的系数矩阵是满阵,使矩阵生成的工作量很庞大,甚至超过了解方程组的工作量.显然,如能找到适当求积公式离散(0.2),则可节省大量计算.使用求积公式法解(0.2)的文献不多,[5]中提…