|
科学通报 1996
P(n,4)与A(n,4)的简单统一显式Keywords: 整数,无序分析,丢番图方程,组合图论,数论 Abstract: 设P(n,k)为整数n分为k部的无序分析的个数,每个分部≥1.这个数已成为组合图论和数论里的重要数据,应用广泛,但却十分难于具体计算.为此,作者已给出P(n,k)的降部恒等式和快速计算的几个定理.但对每一k≥4而言,迄今无法求出简单统一的公式,目前只有 P(n,2)=n/2]简单统一的公式,目前只有和p(n,3)=.又设A(n,k)为下述Diophantos方程sum from i=1 to k(ix_i)=n (1)的非负整数解的个数.尽管方程(1)看来很特殊,但求A(n,k)也是十分困难的.迄今只有 Hardy给出的 A(n,3)=<(n+3)~2/12>.人们至今无法给出简单统一的 A(n,4).本文所有记号与文献1,2]相同,表示距实数x的最近整数,并记r=1-(-1)~n/2=0(当n为偶数),1(当n为奇数)(2)本文主要的结果是引理1(转换关系)
|