|
科学通报 1993
Poisson积分作为Banach空间L_p(R~n)(1Keywords: Poisson积分、C_0,半群,生成元 Abstract: <正> 1 算子 在文献1]中,我们在Banach空间L~p(R~n)上定义算子如下: 这里W~(1·p)={u,u ∈L~p(R~n),D_ju∈L~p(R~n),1≤j≤n}是Sobolev空间。其中D_ju是函数u(x)在分布意义下的第j个偏导数,即<Φ,D_ju>=-,Φ∈D(R~n),这里D(R~n)=C_0~∞(R~n)是R~n上具紧支集无穷次可导函数全体。另外,算子R_j是L~p(R~n)函数的第j个Riesz变换,有R_j∈B(L~p)(看文献2]),B(L~p)表示L~p
|