全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Following Enzyme Activity with Infrared Spectroscopy

DOI: 10.3390/s100402626

Keywords: vibrational spectroscopy, infrared spectroscopy, ATR, FTIR, enzyme activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fourier transform infrared (FTIR) spectroscopy provides a direct, "on-line" monitor of enzymatic reactions. Measurement of enzymatic activity is based on the fact that the infrared spectra of reactants and products of an enzymatic reaction are usually different. Several examples are given using the enzymes pyruvate kinase, fumarase and alcohol dehydrogenase. The main advantage of the infrared method is that it observes the reaction of interest directly, i.e.,no activity assay is required to convert the progress of the reaction into an observable quantity.

References

[1]  Jencks, W.P. Infrared measurements in aqueous media. Methods Enzymol?1963, 6, 914–928.
[2]  Karmali, K.; Karmali, A.; Teixeira, A.; Curto, M.J.M. The use of Fourier transform infrared spectroscopy to assay for urease from Pseudomonas aeruginosa and Canavalia ensiformis. Anal. Biochem?2004, 331, 115–121.
[3]  Fisher, J.; Belasco, J.G.; Khosla, S.; Knowles, J.R. ?-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry?1980, 19, 2895–2901.
[4]  White, A.J.; Drabble, K.; Ward, S.; Wharton, C.W. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution. Biochem. J?1992, 287, 317–323.
[5]  Barth, A.; M?ntele, W.; Kreutz, W. Infrared spectroscopic signals arising from ligand binding and conformational changes in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase. Biochim. Biophys. Acta?1991, 1057, 115–123.
[6]  Barth, A.; M?ntele, W.; Kreutz, W. Molecular changes in the sarcoplasmic reticulum Ca2+ ATPase during catalytic activity. A Fourier transform infrared (FTIR) study using photolysis of caged ATP to trigger the reaction cycle. FEBS Lett.?1990, 277, 147–150.
[7]  Thoenges, D.; Barth, A. Direct measurement of enzyme activity with infrared spectroscopy. J. Biomol. Screen?2002, 7, 353–357.
[8]  López-Sánchez, M.; Ayora-Ca?ada, M.J.; Molina-Díaz, A.; Siam, M.; Huber, W.; Quintás, G.; Armenta, S.; Lendl, B. Determination of enzyme activity inhibition by FTIR spectroscopy on the example of fructose bisphosphatase. Anal. Bioanal. Chem?2009, 394, 2137–2144.
[9]  Lendl, B.; Krieg, P.; Kellner, R. Determination of alkaline phosphatase activity in human sera by mid-FTIR spectroscopy. Fresenius J. Anal. Chem?1998, 360, 717–720.
[10]  Karmali, K.; Karmali, A.; Teixeira, A.; Curto, M.J.M. Assay for glucose oxidase from Aspergillus niger and Penicillium amagasakiense by Fourier transform infrared spectroscopy. Anal. Biochem?2004, 333, 320–327.
[11]  Cadet, F.; Pin, F.W.; Rouch, C.; Robert, C.; Baret, P. Enzyme kinetics by mid-infrared spectroscopy: ?-fructosidase study by a one-step assay. Biochim. Biophys. Acta?1995, 1246, 142–150.
[12]  Schindler, R.; Le Thannh, H.; Lendl, B.; Kellner, R. Determination of enzyme kinetics and chemometric evaluation of reaction products by FTIR spectroscopy on the example of ?-fructofuranosidase. Vib. Spectrosc?1998, 16, 127–135.
[13]  Schindler, R.; Lendl, B. Simultaneous determination of enzyme activities by FTIR-spectroscopy in an one-step assay. Anal. Chim. Acta?1999, 391, 19–28.
[14]  Schindler, R.; Lendl, B.; Kellner, R. Determination of amyloglucosidase activity using flow injection analysis with Fourier transform infrared spectrometric detection. Analyst?1997, 122, 531–534.
[15]  Schindler, R.; Lendl, B.; Kellner, R. Simultaneous determination of α-amylase and amylogucosidase activities using flow injection analysis with Fourier transform infrared spectroscopic detection and partial least-squares data treatment. Anal. Chim. Acta?1998, 366, 35–43.
[16]  Krieg, P.; Lendl, B.; Vonach, R.; Kellner, R. Determination of α-amylase activity using Fourier transform infrared spectroscopy. Fresenius J. Anal. Chem?1996, 356, 504–507.
[17]  Pacheco, R.; Serralheiro, M.L.M.; Karmali, A.; Haris, P.I. Measuring enzymatic activity of a recombinant amidase using Fourier transform infrared spectroscopy. Anal. Biochem?2003, 322, 208–214.
[18]  Pacheco, R.; Karmali, A.; Serralheiro, M.L.M.; Haris, P.I. Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalysed by a recombinant amidase. Anal. Biochem?2005, 346, 49–58.
[19]  G?b, J.; Melzer, M.; Kehe, K.; Richardt, A.; Blum, M.M. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatasse from Loligo vulgaris by in situ Fourier transform infrared spectroscopy. Anal. Biochem?2009, 385, 187–193.
[20]  Wright, W.; Vanderkooi, J.M. Use of IR absorption of the carboxyl group of amino acids and their metabolites to determine pKs, to study proteins, and to monitor enzymatic activity. Biospectroscopy?1997, 3, 457–467.
[21]  Muthusamy, M.; Burrell, M.R.; Thorneley, R.N.F.; Bornemann, S. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using Fourier transform infrared spectroscopy. Biochemistry?2006, 45, 10667–10673.
[22]  Kansiz, M.; Gapes, J.R.; McNaughton, D.; Lendl, B.; Schuster, K.C. Mid-infrared spectroscopy coupled to sequential injection analysis for the on-line monitoring of the acetone-butanol fermentation process. Anal. Chim. Acta?2001, 438, 175–186.
[23]  Seeholzer, S.H.; Jaworowski, A.; Rose, I.A. Enolpyruvate: chemical determination as a pyruvate kinase intermediate. Biochemistry?1991, 30, 727–732.
[24]  Rose, I.A. Stereochemistry of pyruvate kinase, pyruvate carboxylase, and malate enzyme reactions. J. Biol. Chem?1970, 245, 6052–6056.
[25]  Ocha, S. The Enzyme; Summer, B., Mybrack, K., Eds.; Academic press, Inc: New York, NY, USA, 1951; Volume I. part 2, chapter 40.
[26]  Kumar, S.; Barth, A. Phosphoenolpyruvate and Mg2+ binding to pyruvate kinase monitored by infrared spectroscopy. Biophys. J?2010. in press.
[27]  Rudbeck, M.E.; Kumar, S.; Mroginski, M.A.; Lill, S.O.N.; Blomberg, M.R.A; Barth, A. Infrared spectrum of phosphoenolpyruvate: computational and experimental studies. J. Phys. Chem. A?2009, 113, 2935–2942.
[28]  Barth, A.; M?ntele, W. ATP-induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra. Biophys. J?1998, 75, 538–544.
[29]  Takeuchi, H.; Murata, H.; Harada, I. Interaction of adenosine 5′-triphosphate with Mg2+: vibrational study of coordination sites by use of 18O-labeled triphosphates. J. Am. Chem. Soc?1988, 110, 392–397.
[30]  Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 2nd Ed. ed.; Academic Press: New York, NY, USA, 1975.
[31]  Wang, J.H.; Xiao, D.G.; Deng, H.; Callender, R.; Webb, M.R. Vibrational study of phosphate modes in GDP and GTP and their interaction with magnesium in aqueous solution. Biospectroscopy?1998, 4, 219–227.
[32]  Mikawa, Y; Brasch, J.W.; Jakobsen, R.J. Polarized infrared spectra of single crystal of ethyl alcohol. Spectrochim. Acta?1971, 27, 529–539.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133