全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin

DOI: 10.3390/s100402851

Keywords: penicillin, penicillinase, polytyramine, biosensor, potentiometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

A sensitive and reliable potentiometric biosensor for determination of penicillin has been developed by exploiting the self-limiting growth of the non-conducting polymer, polytyramine. Optimum polytyramine-penicillinase (PTy-PNCnase) films for potentiometric detection of penicillin were accomplished with monomer solutions which contained 0.03 M tyramine, 37 U/mL penicillinase, 0.01 M KNO3,and 3 mM penicillin with an applied current density of 0.8 mA/cm2 and an electropolymerisation time of 40 seconds. The potentiometric biosensor gave a linear concentration range of 3–283 μM for penicillin and achieved a minimum detectable concentration of 0.3 μM. The biosensor was successfully utilized for the detection of Amoxycillin and gave an average percentage recovery of 102 ± 6%. Satisfactory recoveries of penicillin G were also achieved in milk samples with the potentiometric biosensor when concentrations are ≥20 ppm.

References

[1]  Yigit, M.; Ersoy, L. Determination of tyramine in cheese by LC-UV. J. Pharm. Biomed. Anal?2003, 31, 1223–1228, doi:10.1016/S0731-7085(02)00698-2. 12667938
[2]  Dubois, J.E.; Lacaze, M.C.; Pham, M.C. Obtaining thin film of “reactive polymers” on metal surfaces by electrochemical polymerization. Part III. Amino substituted polyphenylene oxide films. Application to preparation of ferrocene electroactive films. J. Electroanal. Chem?1981, 117, 233–241, doi:10.1016/S0022-0728(81)80085-X.
[3]  Situmorang, M.; Gooding, J.J.; Hibbert, D.; Barnett, D. Electrodeposited polytyramine as an immobilisation matrix for enzyme biosensors. Biosens. Bioelectronics?1998, 13, 953–962, doi:10.1016/S0956-5663(98)00033-5.
[4]  Cole, M.; Thissen, H.; Losic, D.; Voelcker, N.H. A new approach to the immobilisation of poly (ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates. Surf. Sc?2007, 601, 1716–1725, doi:10.1016/j.susc.2007.01.053.
[5]  Situmorang, M.; Gooding, J.J.; Hibbert, D.B.; Barnett, D. Immobilisation of enzyme throughout a polytyramine matrix: a versatile procedure for fabricating biosensors. Anal. Chim. Acta.?1999, 394, 211–223, doi:10.1016/S0003-2670(99)00291-3.
[6]  Losic, D.; Cole, M.; Thissen, H.; Voelcker, N.H. Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes. Surf. Sc?2005, 584, 245–257, doi:10.1016/j.susc.2005.04.001.
[7]  Tenreiro, A.M.; Nabais, C.; Correia, J.P.; Fernandez, F.M.S.S.; Romero, J.R.; Abrantes, L.M. Progress in the understanding of tyramine electropolymerisation mechanism. J. Solid State Electrochem?2007, 11, 1059–1069, doi:10.1007/s10008-007-0268-6.
[8]  Tsui, I.; Eguchi, H.; Yasukouchi, K.; Unoki, M.; Taniguchi, I. Enzyme immunosensors based on electropolymerized polytyramine modified electrodes. Biosens. Bioelectronics?1990, 5, 87–101, doi:10.1016/0956-5663(90)80001-T.
[9]  Cooper, J.C.; Schubert, F. A biosensor for L-amino acids using polytyramine for enzyme immobilization. Electroanalysis?1994, 6, 957–961, doi:10.1002/elan.1140061107.
[10]  Debenedetto, G.E.; Palmisano, F.; Zambonin, P.G. Flow-through tyrosinase enzyme reactor based on reticulated vitreous carbon functionalized by an electrochemically synthesized film. Anal. Chim. Acta?1996, 326, 149–154, doi:10.1016/0003-2670(96)00047-5.
[11]  Palmisano, F.; De Benedetto, G.E.; Zambonin, C.G. Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Analyst?1997, 122, 365–369, doi:10.1039/a606849i.
[12]  Tenreiro, A.; Cordas, C.M.; Abrantes, L.M. Oligonucleotide Immobilisation on Polytyramine-Modified Electrodes Suitable for Electrochemical DNA Biosensors. Portug. Electrochim. Acta?2003, 21, 361–370, doi:10.4152/pea.200304361.
[13]  Tran, L.D.; Piro, B.; Pham, T.; Ledoan, C.; Angiari, C.; Dao, Le. H.; Teston, F. A polytyramine film for covalent immobilization of oligonucleotides and hybridization. Synth. Met?2003, 139, 251–262, doi:10.1016/S0379-6779(03)00131-0.
[14]  Suprun, E.V.; Budnikov, H.C.; Evtugyn, G.A.; Brainina, Kh. Z. Bienzyme sensor based on thick-film carbon electrode modified with electropolymerised tyramine. Bioelectrochemistry?2004, 63, 281–284, doi:10.1016/j.bioelechem.2003.10.025. 15110288
[15]  Miao, Y.; Chen, J.; Hu, Y. Electrodeposited non-conducting polytyramine for the development of glucose biosensors. Anal. Biochem?2005, 339, 41–45, doi:10.1016/j.ab.2005.01.001. 15766708
[16]  Nakabayashi, Y.; Wakuda, M.; Imai, H. Amperometric Glucose Sensors Fabricated by Electrochemical Polymerization of Phenols on Carbon Paste Electrodes Containing Ferrocene as an Electron Transfer Mediator. Anal. Sc?1998, 14, 1069–1076, doi:10.2116/analsci.14.1069.
[17]  Nakabayashi, Y.; Yoshikawa, H. Amperometric biosensors for sensing of hydrogen peroxide based on electron transfer between horseradish peroxidase and ferrocene as a mediator. Anal. Sc?2000, 16, 609–613, doi:10.2116/analsci.16.609.
[18]  Miscoria, S.A.; Barrera, G.D.; Rivas, G.A. Glucose biosensors based on the immobilisation of glucose oxidase and polytyramine on rodhinised glassy carbon and screen printed electrodes. Sens. Actuators?2006, 115, 205–211, doi:10.1016/j.snb.2005.09.002.
[19]  Spatura, T.; Marcu, M.; Banu, A.; Roman, E.; Spataru, N. Electrodeposition of platinum on polytyramine-modified electrodes for electrocatalytic applications. Electrochim. Acta?2009, 54, 3316–3319, doi:10.1016/j.electacta.2008.12.050.
[20]  Adeloju, S.B.; Moline, A.N. Fabrication of ultra-thin polypyrrole–glucose oxidase film from supporting electrolyte-free monomer solution for potentiometric biosensing of glucose. Biosens. Bioelectronics?2001, 16, 133–139, doi:10.1016/S0956-5663(00)00117-2.
[21]  Hall, E.A.H.; Gooding, J.J.; Hall, C.E. Redox enzyme linked electrochemical sensors: Theory meets practice. Mikrochim. Acta?1995, 121, 119–145, doi:10.1007/BF01248246.
[22]  Trojanowicz, M.; Hitchman, M.L. A potentiometric polypyrrole-based glucose biosensor. Electroanalysis?1996, 8, 263–266, doi:10.1002/elan.1140080311.
[23]  Guerrieri, A.; De Benedetto, G.G.; Palmisano, F.; Zambonin, P.G. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosens. Bioelectronics?1998, 13, 103–112, doi:10.1016/S0956-5663(97)00064-X.
[24]  Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Polypyrrole-based amperometric flow injection biosensor for urea. Anal. Chim. Acta?1996, 323, 107–113, doi:10.1016/0003-2670(95)00562-5.
[25]  Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. Anal. Chim. Acta?1997, 341, 155–160, doi:10.1016/S0003-2670(96)00502-8.
[26]  Gorchkov, D.V.; Soldatkin, A.P.; Maupas, H.; Martelet, N.; Jaffrezic-Renault, C. Correlation between the electrical charge properties of polymeric membranes and the characteristics of ion field effect transistors or penicillinase based enzymatic field effect transistors. Anal. Chim. Acta?1996, 331, 217–223, doi:10.1016/0003-2670(96)00185-7.
[27]  Nishizawa, M.; Matsue, T.; Uchida, I. Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Anal. Chem?1992, 64, 2642–2644, doi:10.1021/ac00045a030. 1443627
[28]  Sohail, M.; Adeloju, S.B. Electroimmobilization of nitrate reductase and nicotinamide adenine dinucleotide into polypyrrole films for potentiometric detection of nitrate. Sens. Actuators. B?2008, 133, 333–339, doi:10.1016/j.snb.2008.02.032.
[29]  Kulp, T.J.; Camins, J.; Angel, S.M.; Munkholm, C.; Walt, D.R. Polymer immobilized enzyme optrodes for the detection of penicillin. Anal. Chem?1987, 50, 2849–2853.
[30]  Chao, H.-P.; Lee, W.-C. A bioelectrode for penicillin detection based on gluten-membrane-entrapped microbial cells. Biotech. Appl. Biochem?2000, 32, 9–14, doi:10.1042/BA20000003.
[31]  Sharma, S.; Johnson, R.W.; Desai, T.A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens. Bioelectronics?2004, 20, 227–239, doi:10.1016/j.bios.2004.01.034.
[32]  Adeloju, S.B.; Shaw, S.J.; Wallace, G.G. Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Anal. Chim. Acta?1993, 281, 611–620, doi:10.1016/0003-2670(93)85022-C.
[33]  Grime, J.K.; Tan, B. Direct titrations of antibiotics with iodate solution, part 1. Titration of some selected penicillins. Anal. Chim. Acta?1979, 105, 361–368, doi:10.1016/S0003-2670(01)83767-3.
[34]  Situmorang, M.; Gooding, J.J.; Hibbert, D.B.; Barnett, D. Development of potentiometric biosensors using electrodeposited polytyramine as the enzyme immobilization matrix. Electroanalysis?2001, 13, 1469–1474, doi:10.1002/1521-4109(200112)13:18<1469::AID-ELAN1469>3.0.CO;2-U.
[35]  Parag, S.S.; Shrikant, A.S.; Rekha, S.S. Clavulanic acid: A review. Biotech. Advan?2008, 26, 335–351, doi:10.1016/j.biotechadv.2008.03.002.
[36]  Grunwald, L.; Petz, M. Food processing effects on residues: penicillins in milk and yoghurt. Anal. Chim. Acta?2003, 483, 73–79, doi:10.1016/S0003-2670(02)01405-8.
[37]  Cacciatore, G.; Petz, M.; Rachid, S.; Hakenbeck, R.; Bergwerff, A.A. Development of an optical biosensor assay for detection of β-lactam antibiotics in milk using the penicillin-binding protein 2x*. Anal. Chim. Acta?2004, 520, 105–115, doi:10.1016/j.aca.2004.06.060.
[38]  Poghossian, A.; Abouzar, M.H.; Razavi, A.; Backer, M.; Bijnens, N.; Williams, O.A.; Haenen, K.; Moritz, W.; Wagner, P.; Schoning, M.J. Nanocystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure. Electrochim. Acta?2009, 54, 5981–5985, doi:10.1016/j.electacta.2009.03.011.
[39]  Siqueira, J.R., Jr.; Abouzar, M.H.; Poghossian, A.; Zucollotto, V.; Oliveira, O.N., Jr.; Schoning, M.J. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens. Bioelectronics?2009, 25, 497–501, doi:10.1016/j.bios.2009.07.007.
[40]  Gaudin, V.; Fontaine, J.; Maris, P. Screening of penicillin residues in milk by a surface Plasmon resonance-based biosensor assay: comparison of chemical and enzymatic sample pretreatment. Anal. Chim. Acta?2001, 436, 191–198, doi:10.1016/S0003-2670(01)00948-5.
[41]  Stred’ansky, M.; Pizzariello, A.; Stred’anska, S.; Miertus, S. Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate. Anal. Chim. Acta?2000, 415, 151–157, doi:10.1016/S0003-2670(00)00869-2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133