|
科学通报 1996
局部化扩张的Casacuberta问题Keywords: 局部化函子,同伦幂等函子,局部化扩张,C问题 Abstract: 设(?)为范畴,称(?)中的态f:A→B与对象X是正交的,若f~*:(?)(BX)→(?)(A,X)为双射.对(?)中的态簇S,记S~⊥={X∈(?)|X与S中的每个态正交}.同理,对(?)中的对象簇D可定义D~⊥.偶对(S,D)称为正交偶,如果S~⊥=D,D~⊥=S.称函子E:(?)→(?)为局部化函子,如果存在自然变换η:I→E(I为恒等函子),使得对任意X∈(?),η_(EX)=E_(ηx)且η_(EX)为等价.此时也称(E,η)为幂等对.令S_E={f∈(?)|Ef为等价},D_E={X∈(?)|η_x:X→EX为等价}.由文献1],(S_E,D_E)为(?)上的正交偶.设(?)’为(?)的满子范畴,(E’,η’)为(?)’上的幂等对,称局部化函子E:(?)→(?)为E’在(?)上的扩张,如果S_(E’)(?)S_E,D_(E’)(?)D_E.设E_1,E_2均为E’在(?)上的扩张,如果D_(E1)(?)D_(E2),则记E_1≤E_2如果函子E满足(S_E,D_E)=(D_E~⊥,D_E~(⊥⊥))(这里运算“⊥”是关于范畴(?)的),显然E为E’的扩张,称为E’在(?)上的最小扩张.如果(S_E,D_E)=(S_E~(⊥⊥),S_E~⊥),这时E也是E’的扩张,称为E’在(?)上的最大扩张.由文献1],命题2.2,对E’在(?)上的任一扩张E,有最小扩张≤E≤最大扩张.下设(?),(?),(?)_0分别表示点标单连通CW复形,点标幂零连通CW复形与点标连通CW复形的同伦范畴,P为某一素数集,则(?),(?),(?)_0上分别存在P-局部化函子,分别记之为L_p
|