%0 Journal Article %T 局部化扩张的Casacuberta问题 %A 沈文淮 %A 易建新 %A 左再思 %J 科学通报 %D 1996 %I %X 设(?)为范畴,称(?)中的态f:A→B与对象X是正交的,若f~*:(?)(BX)→(?)(A,X)为双射.对(?)中的态簇S,记S~⊥={X∈(?)|X与S中的每个态正交}.同理,对(?)中的对象簇D可定义D~⊥.偶对(S,D)称为正交偶,如果S~⊥=D,D~⊥=S.称函子E:(?)→(?)为局部化函子,如果存在自然变换η:I→E(I为恒等函子),使得对任意X∈(?),η_(EX)=E_(ηx)且η_(EX)为等价.此时也称(E,η)为幂等对.令S_E={f∈(?)|Ef为等价},D_E={X∈(?)|η_x:X→EX为等价}.由文献1],(S_E,D_E)为(?)上的正交偶.设(?)’为(?)的满子范畴,(E’,η’)为(?)’上的幂等对,称局部化函子E:(?)→(?)为E’在(?)上的扩张,如果S_(E’)(?)S_E,D_(E’)(?)D_E.设E_1,E_2均为E’在(?)上的扩张,如果D_(E1)(?)D_(E2),则记E_1≤E_2如果函子E满足(S_E,D_E)=(D_E~⊥,D_E~(⊥⊥))(这里运算“⊥”是关于范畴(?)的),显然E为E’的扩张,称为E’在(?)上的最小扩张.如果(S_E,D_E)=(S_E~(⊥⊥),S_E~⊥),这时E也是E’的扩张,称为E’在(?)上的最大扩张.由文献1],命题2.2,对E’在(?)上的任一扩张E,有最小扩张≤E≤最大扩张.下设(?),(?),(?)_0分别表示点标单连通CW复形,点标幂零连通CW复形与点标连通CW复形的同伦范畴,P为某一素数集,则(?),(?),(?)_0上分别存在P-局部化函子,分别记之为L_p %K 局部化函子 %K 同伦幂等函子 %K 局部化扩张 %K C问题 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=130EA3BA444873D13DFA0901A8CB40E0&yid=8A15F8B0AA0E5323&vid=2001E0D53B7B80EC&iid=F3090AE9B60B7ED1&sid=4AA5FA7F666BDD0A&eid=A766A50385B9FB1F&journal_id=0023-074X&journal_name=科学通报&referenced_num=0&reference_num=0