全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  1996 

交叉积Hopf代数的结构

Keywords: Hopf代数,交叉积,代数结构,张量积,余代数

Full-Text   Cite this paper   Add to My Lib

Abstract:

Molnar在文献1]中用Hopf代数范畴中的可裂及余可裂短正合裂刻画了半直积Hopf代数及其对偶.Radford及Majid分别将其推广成双积(biproduct)及双交叉积(bicrossproduct),前者成为Majid的bosonization定理的一个漂亮例子,后者给出了Drinfel’d的量子偶(Double)的通用构作用.本文从新的角度推广Molnar的构作,研究张量积余代数与交叉积代数结构一起成为双代数以及Hopf代数的条件.设K为域,所论代数、余代数均指域K上的,采用文献6]中的Sigma记号,但上、下标中省去括号,(?)简记为(?).定义 设H为双代数,B为K上向量空间,若存在双线性映射σ:H(?)H→B和线性映射·:H(?)B→B,满足1)I_H·b=b,2)∑(h_1·(l_1·b))σ(h_2,l_2)=∑σ(h_1,l_1)(h_2l_2·b),(?)b∈B,h,l∈H,则称B为左H(?)扭曲模.若代数B是左H(?)扭曲模且满足3)h·ab=∑(h_1·a)(h_2·b),4)h·1_B=ε_H(h)1_B,(?)h∈H,a,b∈B,则称B为左H(?)扭曲模代数.若余代数B是左H(?)扭曲模且满足3′)△_B(h·b)=∑h_1·b_1(?)h_2·b_2,4′)ε_B(h·b)=ε_H(h)ε_B(b),(?)h∈H,b∈B,则称B为左H(?)扭曲模余代数.若双代数B同时是左H(?)扭曲模代数和左H(?)扭曲模余代数,则称B为左H(?)扭曲模双代数.设H为双代数,B同时是代数和余代数,但不一定是双代数.若B是左H(?)扭曲模

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133