%0 Journal Article %T 交叉积Hopf代数的结构 %A 胡国权 %J 科学通报 %D 1996 %I %X Molnar在文献1]中用Hopf代数范畴中的可裂及余可裂短正合裂刻画了半直积Hopf代数及其对偶.Radford及Majid分别将其推广成双积(biproduct)及双交叉积(bicrossproduct),前者成为Majid的bosonization定理的一个漂亮例子,后者给出了Drinfel’d的量子偶(Double)的通用构作用.本文从新的角度推广Molnar的构作,研究张量积余代数与交叉积代数结构一起成为双代数以及Hopf代数的条件.设K为域,所论代数、余代数均指域K上的,采用文献6]中的Sigma记号,但上、下标中省去括号,(?)简记为(?).定义 设H为双代数,B为K上向量空间,若存在双线性映射σ:H(?)H→B和线性映射·:H(?)B→B,满足1)I_H·b=b,2)∑(h_1·(l_1·b))σ(h_2,l_2)=∑σ(h_1,l_1)(h_2l_2·b),(?)b∈B,h,l∈H,则称B为左H(?)扭曲模.若代数B是左H(?)扭曲模且满足3)h·ab=∑(h_1·a)(h_2·b),4)h·1_B=ε_H(h)1_B,(?)h∈H,a,b∈B,则称B为左H(?)扭曲模代数.若余代数B是左H(?)扭曲模且满足3′)△_B(h·b)=∑h_1·b_1(?)h_2·b_2,4′)ε_B(h·b)=ε_H(h)ε_B(b),(?)h∈H,b∈B,则称B为左H(?)扭曲模余代数.若双代数B同时是左H(?)扭曲模代数和左H(?)扭曲模余代数,则称B为左H(?)扭曲模双代数.设H为双代数,B同时是代数和余代数,但不一定是双代数.若B是左H(?)扭曲模 %K Hopf代数 %K 交叉积 %K 代数结构 %K 张量积 %K 余代数 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=3690FEAC37E0FF572EFCB93C1164D513&yid=8A15F8B0AA0E5323&vid=2001E0D53B7B80EC&iid=9CF7A0430CBB2DFD&sid=CA122BD5B2FF2137&eid=E3691231514F8E11&journal_id=0023-074X&journal_name=科学通报&referenced_num=0&reference_num=0