|
科学通报 1988
M.Ozawa命题的证明及应用Abstract: 1968年M. Ozawa提出下述命题(见Kodai Math. Sem. Rep., 20(1968),305—313): 设f(z)是整函数,{b_n}是一无界复序列,l_1,l_2,…,l_p是复平面上p条互不平行的直线,若所有f(z)=b_n(n=1,2,…)的根仅有有限个在l_1,l_2,…,l_p之外,则f(z)为多项式,且其次数不超过2p。 A. Edrei证明了p=1时上述命题成立(见Trans. Amer. Math. Soc., 78(1955),
|