|
控制理论与应用 2009
A robust and adaptive terminal sliding mode control based on backstepping
|
Abstract:
A robust and adaptive terminal sliding mode control based on backstepping is presented for a general class of strict-block-feedback systems with uncertainties. Fuzzy logic systems are employed to compensate for the unknown uncertainties in the system. Adaptive backstepping method is then used to design the terminal sliding surface. A robust and adaptive variable-structure controller is thus obtained. The tracking error is driven onto the sliding surface and converges to an arbitrary small neighborhood of the desired trajectory in finite-time. Using the Lyapunov approach, we prove that all signals in the closed loop system are ultimately bounded. Finally, the simulation results of the nonlinear six-degree-offreedom maneuver flight of a fighter plane demonstrate that the proposed approach has strong robust performance.