全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study on Evaluating Data Classifying Quality Based on Mutual Subsethood
基于互包含度的数据分类效果评价研究

Keywords: Fuzzy c-means algorithm,Mutual subsethood,Classifying quality
互包含度
,数据分类,效果评价,模糊C-均值聚类算法,非监督模式识别方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on the shortage of fuzzy c-means algorithm which initialized classification parameter is sensitivity to data classifying quality,and different initialized classification parameters generate classifying result with bigger other- ness. A new evaluating criterion based on mutual subsethood puts forward to assess data classifying quality in this pa- per. Experimental results show that an evaluating criterion proposed in this paper is feasible.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133