%0 Journal Article %T Study on Evaluating Data Classifying Quality Based on Mutual Subsethood
基于互包含度的数据分类效果评价研究 %A WU Cheng-Mao %A FAN Jiu-Lun %A
吴成茂 %A 范九伦 %J 计算机科学 %D 2005 %I %X Based on the shortage of fuzzy c-means algorithm which initialized classification parameter is sensitivity to data classifying quality,and different initialized classification parameters generate classifying result with bigger other- ness. A new evaluating criterion based on mutual subsethood puts forward to assess data classifying quality in this pa- per. Experimental results show that an evaluating criterion proposed in this paper is feasible. %K Fuzzy c-means algorithm %K Mutual subsethood %K Classifying quality
互包含度 %K 数据分类 %K 效果评价 %K 模糊C-均值聚类算法 %K 非监督模式识别方法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=DAC3408AC559D56B&yid=2DD7160C83D0ACED&vid=9971A5E270697F23&iid=CA4FD0336C81A37A&sid=BA79719BCA7341D5&eid=8575BEDA702C4B7C&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=14