The fabrication and characterization of template silver nanoshell structures and the encapsulation of gold nanoparticles using biocompatible poly(oxyethylene)-poly(butylene) diblock co-polymer vesicles is described in this work. These vesicles have a narrow diameter size distribution around 200 nm. Silver nanoparticles ( ? = 1–10 nm) functionalized with decanethiol were successfully entrapped in the hydrophobic membrane and non-functionalized gold nanoparticles ( ? = 3.0–5.5 nm) were encapsulated in the vesicle core. Transmission Electron Microscopy confirms the localisation of the particles; silver functionalized nanoparticles appear to thicken the vesicle membrane as shown with TEM image analysis. The enhancement of the optical properties is confirmed using transmission spectrophotometry; the 430 nm plasmon resonance peak of the silver nanoparticles was replaced by a broader extinction spectrum to beyond 700 nm (O.D. = 0.8). For a number density of 4.8 x 10 12 mL -1 the scattering cross section was calculated to be 0.92 x 10 -4 μm 2 with a scattering coefficient of 0.44 mm -1. The measurements indicate scattering cross section of 3.8 x 10 -5 μm 2, attenuation coefficient of 0.18 mm -1 and extinction efficiency equal to 1.2 x 10 -3. Stable and biocompatible block co-polymer vesicles can potentially be used as plasmon-resonant optical contrast agents for biomedical applications.
References
[1]
Discher, D.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–973.
[2]
Battaglia, G.; Ryan, A. Pathways of polymeric vesicle formation. J. Phys. Chem. B 2006, 110, 10272–10279.
[3]
Battaglia, G.; Ryan, A. Neuron-like tubular membranes made of diblock copolymer amphiphiles. Angew. Chem. Int. Ed. 2006, 45, 2052–2056.
[4]
Smart, T. Block copolymer nanostructures. Nanotoday 2008, 3, 38–46.
[5]
Battaglia, G.; Ryan, A. The evolution of vesicles from bulk lamellar gels. Nat. Mater. 2005, 4, 869–876.
[6]
Battaglia, G.; Ryan, A. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 2006, 39, 798–805.
[7]
Battaglia, G.; Ryan, A. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc. 2005, 127, 8757–8764.
[8]
Lomas, H. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 2008, 139, 1–18.
[9]
Photos, P.J.; Bacakovaa, L.; Dischera, B.; Batesb, F.S.; Discher, D.E. Polymer vesicles in vivo: Correlations with PEG molecular weight. J. Control. Release 2003, 90, 323–334.
[10]
Hearnden, V. Diffusion studies of nanometer polymersomes across tissue engineered human oral mucosa. Pharm. Res. 2009, 26, 1718–1728.
[11]
Discher, D. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog. Polym. Sci. 2007, 32, 838–857.
[12]
Hughes, G.A. Nanostructure-mediated drug delivery. Nanomedicine 2005, 22–30.
[13]
Jain, P.; Lee, K.; El-Sayed, I. Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. 2006, 110, 7238–7248.
[14]
El-Sayed, I.; Huang, X.; El-Sayed, M. Surface plasmon resonance scattering and adsorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834.
Ghoroghchian, P. Near-infrared-emissive polymerosomes: Self-assembled soft matter for in vivo optical imaging. Proc. Nat. Acad. Sci. USA 2005, 102, 2922–2927.
[17]
Lee, T. Engineered microsphere contrast agents for optical coherence tomography. Optic. Lett. 2003, 28, 1546–1548.
[18]
Izatt, J.; Kulkarni, M. Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J. Sel. Top. Quantum Electr. 1996, 2, 1017–1028.
[19]
Masato, O.; Masamitsu, H. Ultra-high resolution optical coherence tomography (OCT) using a halogen lamp as the light source. Opt. Rev. 2003, 10, 478–481.
[20]
Boppart, J.; Hoying, J.; Sullivan, C. Optical probes and techniques for molecular contrast agents for spectroscopic optical coherence tomography. Opt. Lett. 2005, 30, 3048–3050.
[21]
Yu, M.; Wang, H.; Zhou, X. One template synthesis of raspberry-like hierarchical siliceous hollow spheres. J. Am. Chem. Soc. 2007, 129, 14576–14577.
[22]
Wang, R. Self-assembled gold nanoshells on biodegradable chitosan fibers. Biomacromolecules 2006, 7, 2719–2721.
[23]
Li, Y. In Situ formation of Gold-“Decorated” vesicles from a RAFT-synthesized, thermally responsive block copolymer. Macromolecules 2007, 40, 8524–8526.
Yuan, J.J. Facile synthesis of highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylchline)-coated gold nanoparticles in aqueous solution. Langmuir 2006, 22, 11022–11027.
[26]
Booth, C.; Yu, G.; Nace, V. Self-assembly in simple and complex systems. In Amphiphilic Block Copolymers; Lindman, B., Alexandridis, P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2000.
[27]
MacDonald, R.C.; MacDonald, R.I.; Menco, B.P.; Takeshita, K.; Subbarao, N.K.; Hu, L.R. Small-volume extrusion apparatus for preparation of large unilamellar vesicles. Biochim. Biophys. Acta 1991, 1061, 297–303.
[28]
Lomas, H. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv. Mater. 2007, 19, 4238–4243.
[29]
Prahl, S. Mie Scattering Calculator; Oregon Medical Laser Center: Portland, OR, USA, 2007. Avalable online: http://omlc.ogi.edu/calc/mie_calc.html (accessed on 3 May 2011).
[30]
Malynych, S.; Chumanov, G. Coupled planar silver nanoparticle arrays as refractive index sensors. J. Opt. A-Pure Appl. Opt. 2006, 8, S144–S147.
[31]
Johnson, P.; Christy, R. Optical constants of the nobel metals. Phys. Rev. B 1972, 6, 4370–4379.
[32]
Scaffardi, L.; Tocho, J. Size dependence of refractive index of gold nanoparticles. Nanotechnology 2006, 17, 1309–1315.
[33]
Curry, A.; Nusz, G.; Chilkoti, A.; Wax, A. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt. Express 2005, 13, 2668–2677.
[34]
Chen, J.T.; Thomas, E.L. The use of force modulation microscopy to investigate block copolymer morphology. J. Mater. Sci. 1996, 31, 2531–2538.
[35]
Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonance. Chem. Phys. Lett. 1998, 288, 243–247.
[36]
Agrawal, A.; Pfefer, T.J.; Huang, S.; Lin, A.W.H.; Lee, M.-H.; Drezek, R.A.; Barton, J.K. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. J. Biomed. Opt. 2006, 11, 041121.
[37]
Lu, Q.; Gan, X.; Gu, M.; Luo, Q. Monte carlo modeling of optical coherence tomography imaging through turbid media. Appl. Opt. 2004, 44, 1628–1637.
[38]
Faber, D.; van der Meer, F.; Aalders, M.; van Leeuwen, T. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt. Express 2004, 12, 4353–4365.