(1) The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonyl)catechol (NBOC) or 4-(6-nitroveratryloxycarbonyl)catechol (NVOC) was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2) Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.
References
[1]
Ukai, Y. Introduction to flat panel display (6) fpd to components and materials technology (1) touch panel. Chem. Times 2011, 4, 2–7.
[2]
Baxter, L.K. Capacitive Sensors: Design and Application, 1st ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 1996.
[3]
Hotelling, S.P; Land, B.R. Double-Sided Touch-Sensitive Panel with Shield and Drive Combined Layer. U.S. Patent7 7,920,129 B2, 5 April 2011.
[4]
Cordonier, C.E.J.; Nakamura, A.; Shimada, K.; Fujishima, A. Photo-acid generating ligands for development of positive-tone directly photo-patternable metal complexes. Langmuir 2011, 27, 3157–3165, doi:10.1021/la104259f.
[5]
Cordonier, C.E.J.; Nakamura, A.; Shimada, K.; Fujishima, A. Enhanced photoefficiency in positive-tone direct patterning of metal complexes for forming patterned indium tin oxide films. Thin Solid Films 2012, 520, 5867–5876, doi:10.1016/j.tsf.2012.05.008.
[6]
Cordonier, C.E.J.; Nakamura, A.; Fujishima, A. Photosensitive Composition, Photosensitive Metal Complex, Coating Liquid, and Method for Manufacturing Metal Oxide Thin Film Pattern. Japan Patent Application 2009000108011, 27, April, 2009.
[7]
Cordonier, C.E.J.; Nakamura, A.; Shimada, K.; Fujishima, A. Metallic film formation using direct micropatterning with photoreactive metal complexes. Langmuir 2012, 28, 13542–13548, doi:10.1021/la302437t.
San Miguel, V.; Bochet, C.G.; del Campo, A. Wavelength-selective caged surfaces: How many functional levels are possible? J. Am. Chem. Soc. 2011, 133, 5380–5388, doi:10.1021/ja110572j.
[10]
Bochet, C.G. Photolabile protecting groups and linkers. J. Chem. Soc. Perkin Trans. 1 2002, 125–142.
[11]
Pelliccioli, A.P.; Wirz, J. Photoremovable protecting groups: Reaction mechanisms and applications. Photochem. Photobiol. Sci. 2002, 1, 441–458, doi:10.1039/b200777k.
[12]
Specht, A.; Thomann, J.-S.; Alarcon, K.; Wittayanan, W.; Ogden, D.; Furuta, T.; Kurakawa, Y.; Goeldner, M. New photoremovable protecting groups for carboxylic acids with high photolytic efficiencies at near-UV irradiation. Application to the photocontrolled release of L-glutamate. ChemBioChem 2006, 7, 1690–1695, doi:10.1002/cbic.200600111.
[13]
Masuda, Y.; Yamagishi, M.; Koumoto, K. Site-selective deposition and micropatterning of visible-light-emitting europium-doped yttrium oxide thin film on self-assembled monolayers. Chem. Mater. 2007, 19, 1002–1008, doi:10.1021/cm061303g.
[14]
Yamamoto, O. Solid oxide fuel cells: Fundamental aspects and prospects. Electrochim. Acta 2000, 45, 2423–2435, doi:10.1016/S0013-4686(00)00330-3.
[15]
Norton, D.P. Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R 2004, 43, 139–247, doi:10.1016/j.mser.2003.12.002.
[16]
Mahalingam, T.; Radhakrishnan, M.; Palasubramanian, C. Dielectric behaviour of lanthanum oxide thin film capacitors. Thin Solid Films 1989, 78, 229–233, doi:10.1016/0040-6090(89)90588-9.