|
计算机系统应用 2010
Ranking Algorithm of Search Engine Based on Users Feedback
|
Abstract:
以Web2.0中用户行为作为研究对象,通过发掘用户反馈方式,提出用户反馈分值的概念,对用户反馈影响搜索结果排名的具体方法以及相应实现进行研究,提出了一种基于神经网络的网页排序算法。该算法引入BP神经网络模型,根据用户反馈分值选择样本训练神经网络。将传统搜索结果输入到经过训练的神经网络进行计算,根据计算出的结果所表示的网页相关性强弱判断后进行二次排序。该算法利用了神经网络具有的模式识别能力,有效地将用户反馈和搜索引擎结合起来,使得搜索结果更加符合用户的搜索要求。