Organ protection is a routine therapy in severe injuries. Our aim was to evaluate the beneficial effects of ulinastatin in experimental rats. Rats were randomly divided into a sham control, a model control and an ulinastatin-treated group. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined. Serum amylase, serum aspartate aminotransaminase (AST), lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CKMD) activities, interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), nitric oxide (NO) and cardiac troponin I (nTnl) levels were examined. Results showed that ulinastatin decreased MDA levels and ameliorated the down-regulation of SOD activity. In addition, ulinastatin pretreatment may decrease serum AST, LDH and CKMD activities, IL-8, TNF-α, and nTnl levels, and enhance NO level. Our results demonstrated that oxidative injury occurred after IR and that ulinastatin exhibits significant protective effects against these effects.
References
[1]
Ferdinandy, P.; Schulz, R.; Baxter, G.F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol. Rev. 2007, 59, 418–458, doi:10.1124/pr.107.06002.
[2]
Garcia-Dorado, D.; Agullo, L.; Sartorio, C.L.; Ruiz-Meana, M. Myocardial protection against reperfusion injury: the cGMP pathway. Thromb. Haemost. 2009, 101, 635–642. 19350105
[3]
Madamanchi, N.R.; Patterson, C. Principles of Molecular Cardiology; Humana Press: New York, NY, USA, 2005; pp. 549–561.
[4]
Nakamura, K.; Fushimi, K.; Kouchi, H.; Mihara, K.; Miyazaki, M.; Ohe, T.; Namba, M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998, 98, 794–799, doi:10.1161/01.CIR.98.8.794.
[5]
Ferrari, R.; Alfieri, O.; Curello, S.; Ceconi, C.; Cargnoni, A.; Marzollo, P.; Pardini, A.; Caradonna, E.; Visioli, O. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 1990, 81, 201–211, doi:10.1161/01.CIR.81.1.201.
[6]
Li, X.Y.; McCay, P.B.; Zughaib, M.; Jeroudi, M.O.; Triana, J.F.; Bolli, R. Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J. Clin. Invest. 1993, 92, 1025–1041, doi:10.1172/JCI116608.
[7]
Sato, Y.; Ishikawa, S.; Otaki, A.; Takahashi, T.; Hasegawa, Y.; Suzuki, M.; Yamagishi, T.; Morishita, Y. Induction of acute-phase reactive substances during open-heart surgery and efficacy of ulinastatin, inhibiting cytokines and postoperative organ injury. Jpn. J. Thorac. Cardiovasc. Surg. 2000, 48, 428–434, doi:10.1007/BF03218170.
[8]
Inoue, K.; Takano, H.; Shimada, A.; Yanagisawa, R.; Sakurai, M.; Yoshino, S.; Sato, H.; Yoshikawa, T. Urinary trypsin inhibitor protects against systemic inflammation induced by lip polysaccharide. Mol. Pharmacol. 2005, 67, 673–680. 15576631
[9]
Xiao, C.W.; Liu, M.L.; Peng, J.T.; Yang, Z.D.; Jiang, F.Z. The affect of ulinastain on NO, TNF-α and cardiac troponin I (cTnI) after myocardial ischemia reperfusion injury (in Chinese). Jiangxi Med. J. 2011, 46, 802–804.
[10]
Wang, D.-Z.; Zhang, L.-P. Protective effect of ulinastatin on ischemia and reperfusion of heart in rats. Chin. Hosp. Pharm. J. 2010, 30, 1581–1583.
[11]
Liu, L.-L.; Fu, C.-Z.; Zhou, Q.-H.; Xie, C.-L.; Zhu, W.; Liu, C.-M. Effects of ulinastatin on plasma inflammatory cytokines, MDA and SOD during piggyback orthotopic liver transplantation operation. Acta Univ. Med. NanJing 2005, 25, 350–352.
[12]
Messarah, M.; Saoudi, M.; Boumendjel, A.; Boulakoud, M.S.; Feki, A.E. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol. 2011, 31, 33–41, doi:10.1016/j.etap.2010.09.003.
[13]
Motawi, T.M.K.; Sadik, N.A.H.; Refaat, A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem. Toxicol. 2010, 48, 2326–2336, doi:10.1016/j.fct.2010.05.067.
[14]
Hofmann, U.; Heuer, S.; Meder, K.; Boehler, J.; Lange, V.; Quaschning, T.; Ertl, G.; Bonz, A. The proinflammatory cytokines TNF-α and IL-1β impair economy of contraction in human myocardium. Cytokine 2007, 39, 157–162, doi:10.1016/j.cyto.2007.07.185.
[15]
Al Johani, S.M.; Akhter, J. Comparison of the Cepheid Xpert FluA/H1N1 screening test with real time polymerase chain reaction (PCR) in detection of 2009 H1N1 Influenza A Pandemic. Afr. J. Microbiol. Res. 2012, 6, 5138–5141.
[16]
Banani, A.; Maleki-Dizaji, N.; Niknahad, H.; Garjani, A.; Ziaee, M.; Ghavimi, H.; Hamedeyazdan, S.; Garjani, A. N-acetylaspartylglutamate (NAAG) exhibits anti-inflammatory effects on carrageenan-induced paw edema model of inflammation in rats. Afr. J. Pharm. Pharmacol. 2012, 6, 1702–1709.
[17]
Kaur, K.; Sharma, A.K.; Dhingra, S.; Singal, P.K. Interplay of TNF-α and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J. Mol. Cell. Cardiol. 2006, 41, 1023–1030, doi:10.1016/j.yjmcc.2006.08.005.
[18]
González, A.; Ravassa, S.; Beaumont, J.; López, B.; Díez, J. New Targets to Treat the Structural Remodeling of the Myocardium. J. Am. Coll. Cardiol. 2011, 58, 1833–1843, doi:10.1016/j.jacc.2011.06.058.
[19]
Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Kadowitz, P.J. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: Stimulation by acetylcholine, bradykinin and arachidonic acid. Proc. Natl. Acad. Sci. USA 1986, 237, 893–900.
[20]
Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: An overview. Circulation 2002, 90, 21–28, doi:10.1161/hh0102.102330.
[21]
Kaya, Z.; Katus, H.A.; Rose, N.R. Cardiac troponins and autoimmunity: Their role in the pathogenesis of myocarditis and of heart failure. Clin. Immunol. 2010, 134, 80–88, doi:10.1016/j.clim.2009.04.008.
[22]
Berk, S.; Tepe, B.; Arslan, S. Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Inula oculus-christi. Afr. J. Pharm. Pharmacol. 2011, 5, 1695–1702.
White, M.Y.; Hambly, B.D.; Jeremy, R.W.; Cordwell, S.J. Ischemia-specific phosphorylation and myofilament translocation of heat shock protein 27 precedes alpha B-crystallin and occurs independently of reactive oxygen species in rabbit myocardium. J. Mol. Cell. Cardiol. 2006, 40, 761–774, doi:10.1016/j.yjmcc.2006.02.007.
[25]
Seshadri, G.; Sy, J.C.; Brown, M.; Dikalov, S.; Yang, S.C.; Murthy, N.; Davis, M.E. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 2010, 31, 1372–1379, doi:10.1016/j.biomaterials.2009.10.045.
[26]
Jethwani, U.N.; Mulla, S.A.; Shah, L.N. Detection of inducible clindamycin resistance by an automated system in a tertiary care hospital. Afr. J. Microbiol. Res. 2011, 5, 2870–2872.
[27]
Du, Y.; Ko, K.M. Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts: Single versus multiple doses and gender difference. Life Sci. 2005, 77, 2770–2782, doi:10.1016/j.lfs.2005.03.027.
[28]
Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 1990, 86, 421–431, doi:10.1016/0076-6879(90)86135-I.
[29]
Winterbourn, C.; Hawkins, R.; Brian, M.; Carrell, R. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 1975, 85, 337–341. 803541