Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES (PES–NH 2) were successfully synthesized as novel materials for immobilization. Membranes with various pore sizes (from 10–600 nm) based on synthesized PES and PES–NH 2 polymers were successfully fabricated to be applied as bioreactors to increase the immobilized lipase performances. The influence of pore sizes, concentration of additives, and the functional groups that are attached on the PES backbone on enzyme loading and enzyme activity was studied. The largest enzyme loading was obtained by Mucor miehei lipase immobilized onto a PES–NH 2 membrane composed of 10% of PES–NH 2, 8% of dibutyl phthalate (DBP), and 5% of polyethylene glycol (PEG) (872.62 μg/cm 2). Hydrolytic activity of the immobilized lipases indicated that the activities of biocatalysts are not significantly decreased by immobilization. From the reusability test, the lipase immobilized onto PES–NH 2 showed a better constancy than the lipase immobilized onto PES (the percent recovery of the activity of the lipases immobilized onto PES–NH 2 and PES are 97.16% and 95.37%, respectively), which indicates that this novel material has the potential to be developed as a bioreactor for enzymatic reactions.
References
[1]
Worsfold, P.J. Classification and chemical characteristics of immobilized enzymes. Pure Appl. Chem. 1995, 67, 597–600, doi:10.1351/pac199567040597.
[2]
Vandamme, E.J. Peptide antibiotic production through immobilized biocatalyst technology. Enzym. Microb. Technol. 1983, 5, 403–415, doi:10.1016/0141-0229(83)90021-2.
[3]
Miletic, N.; Nastasovic, A.; Loos, K. Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications. Bioresour. Technol. 2012. in press.
[4]
Schulze, B.; Wubbolts, M.G. Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 1999, 10, 609–615, doi:10.1016/S0958-1669(99)00042-7.
[5]
Clark, L.C.; Lysons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 4, 29–45.
Weisse, H.; Keul, H.; Hocker, H. A new route to carboxylated poly(ether sulfone)s: Synthesis and characterization. Polymer 2001, 42, 5973–5978, doi:10.1016/S0032-3861(01)00038-6.
[8]
Sinisterra, J.V.; Moreno, J.M. Immobilization of lipase from Candida cylindracea on inorganic supports. J. Mol. Catal. 1994, 93, 357–369, doi:10.1016/0304-5102(94)00108-1.
[9]
Kumakura, M.; Kaetsu, I. Immobilization of enzymes masks their active site. Biosci. Rep. 1984, 4, 181–187, doi:10.1007/BF01119652.
[10]
Reetz, M.T.; Jaeger, K.E. Overexpression, immobilization, and biotechnological apllication of Pseudomonas lipases. Chem. Phys. Lip. 1998, 93, 3–14, doi:10.1016/S0009-3084(98)00033-4.
[11]
Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904, doi:10.1002/adsc.201100534.
[12]
Derewenda, Z.S.; Derewenda, U.; Dodson, G.G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 ? resolution. J. Mol. Biol. 1992, 227, 818–839, doi:10.1016/0022-2836(92)90225-9.
[13]
Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250, doi:10.1016/j.cis.2008.06.001.
[14]
Miled, N.; Beisson, F.; De Caro, J.; De Caro, A.; Arondel, J.; Verger, R. Interfacial catalysis by lipases. J. Mol. Catal. B Enzym. 2001, 11, 165–171, doi:10.1016/S1381-1177(00)00041-2.
[15]
Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 2008, 43, 1019–1032, doi:10.1016/j.procbio.2008.06.004.
[16]
Rodrigues, R.C.; Berenguer-Murcia, á.; Fernandez-Lafuente, R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 2011, 353, 2216–2238, doi:10.1002/adsc.201100163.
[17]
Hernandez, K.; Fernandez-Lafuente, R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym. Microb. Technol. 2011, 48, 107–122, doi:10.1016/j.enzmictec.2010.10.003.
[18]
Fernandez-Lafuente, R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzym. Microb. Technol. 2009, 45, 405–418, doi:10.1016/j.enzmictec.2009.08.009.
[19]
Brady, D.; Jordaan, J. Advances in enzyme immobilization. Biotechnol. Lett. 2009, 31, 1639–1650, doi:10.1007/s10529-009-0076-4.
Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463, doi:10.1016/j.enzmictec.2007.01.018.
[22]
Giorno, L.; Drioli, E. Biocatalytic membrane reactors: Applications and perspectives. TIBTECH 2000, 18, 339–349, doi:10.1016/S0167-7799(00)01472-4.
[23]
Stamatoglou, S.C.; Keller, J.M. Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen. J. Cell Biol. 1983, 96, 1820–1823, doi:10.1083/jcb.96.6.1820.
[24]
Wolf, M.G.; Hoefling, M.; Aponte-Santamaria, C.; Grubmüller, H.; Groenhof, G. Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comp. Chem. 2010, 31, 2169–2174, doi:10.1002/jcc.21507.
[25]
Tosa, T.; Mori, T.; Fuse, N.; Chibata, I. Studies on continuous enzyme reactions. IV. Preparation of a DEAE-sephadex–aminoacylase column and continuous optical resolution of acyl-DL-amino acids. Biotech. Bioeng. 1967, 9, 603–615, doi:10.1002/bit.260090413.
[26]
Sewalt, J.J.; Padt van der, A.; van’t Riet, K. Potential effect of themembranepotting on the long-term performance during hydrolysis of edible oil. J. Membr. Sci. 2000, 164, 79–88, doi:10.1016/S0376-7388(99)00205-7.
[27]
Shau-wei, T.; SaN-syan, S. Selection of hydrophobic membranes in the lipase-catalyzed hydrolysis of olive oil. J. Membr. Sci. 1998, 146, 1–8, doi:10.1016/S0376-7388(98)00098-2.
[28]
Pozniak, G.; Krajewska, B.; Trochimczuk, W. Urease immobilized on modified polysulphone membrane: Preparation and properties. Biomaterials 1995, 16, 129–134, doi:10.1016/0142-9612(95)98275-J.
[29]
Nelson, L.A.; Foglia, T.A.; Marmer, W.N. Lipase-catalyzed production of biodiesel. JAOCS 1996, 73, 1191–1195, doi:10.1007/BF02523383.
[30]
Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633, doi:10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V.
[31]
Edmundo, C.; Valerie, D.; Didier, C.; Alain, M. Efficient Lipase-catalyzed production of tailor-made emulsifier using solvent engineering coupled to extractive processing. JAOCS 1998, 75, 309–313, doi:10.1007/s11746-998-0046-3.
[32]
Linder, M.; Kochanowski, N.; Fanni, J.; Parmentier, M. Response surface optimisation of lipase-catalysed esterification of glycerol and n-3 polyunsaturated fatty acids from salmon oil. Process Biochem. 2005, 40, 273–279, doi:10.1016/j.procbio.2004.01.014.
[33]
Hills, G. Industrial use of lipases to produce fatty acid esters. Eur. J. Lipid Sci. Technol. 2003, 105, 601–607, doi:10.1002/ejlt.200300853.
[34]
Athawale, V.; Manjrekar, N.; Athawale, M. Effect of reaction parameter on synthesis of citronellyl methacrylate by lipase-catalyzed transesterification. Biotechnol. Prog. 2003, 19, 298–302, doi:10.1021/bp0202867.
Gandhi, V.M.; Cherian, K.M.; Mulky, M.J. Nutritional and toxicological evaluation of rubber seed oil. JAOCS 1990, 67, 883–886, doi:10.1007/BF02540511.
[37]
Sonnet, P.E.; Moore, G. Esterification of 1- and rac-2-octanols with selected acids and acid derivatives using lipases. Lipids 1988, 23, 955–996, doi:10.1007/BF02536343.
[38]
Brady, L.; Brzozowski, A.M.; Derewenda, Z.S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J.P.; Christiansen, L.; Huge-Jensen, B.; Norskov, L.; Thim, L.; Menge, U. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990, 343, 767–770, doi:10.1038/343767a0.
[39]
Keitoku, F.; Kakimoto, M.A.; Imai, Y. Synthesis and properties of aromatic poly(ether sulfone)s and poly(ether ketone)s based on methyl-substituted biphenyl-4,4'-diols. J. Polym. Sci. A Polym. Chem. 1994, 32, 317–322, doi:10.1002/pola.1994.080320213.
[40]
Handayani, N.; Buchari; Wahyuningrum, D.; Zulfikar, M.A. intesis dan karakterisasi poli (eter-sulfon) dan poli (eter-sulfon) ternitrasi sebagai material membran untuk imobilisasi lipase [Bahasa]. J. Kimia Indones. 2010, 5, 7–16.
[41]
Knezevic, Z.D.; Siler-Marinkovic, S.; Mojovic, L. Kinetics of lipase-catalyzed hydrolysis of palm oil in lecithin/izooctane reversed micelles. Appl. Microbiol. Biotechol. 1998, 49, 267–271, doi:10.1007/s002530051167.
[42]
Sho, M.T.; Eirich, F.R.; Strathmann, H.; Baker, R.W. Preparation of asymmetric loeb-sourirajan membranes. J. Polym. Sci. Polym. Lett. Ed. 1973, 11, 201–205, doi:10.1002/pol.1973.130110311.
[43]
Marsman, D.S. NTP technical report on the toxicity studies of dibutyl phthalate (CAS No. 84-74-2) administered in feed to F344/N rats and B6C3F1 mice. NTP Toxic. Rep. 1995, 30, 1–G5.
[44]
Handayani, N.; Miletic, N.; Loos, K.; Achmad, S.; Wahyuningrum, D. Properties of immobilized Candida antarctica lipase B on highly macroporous copolymer. Sains Malays. 2011, 40, 965–972.
[45]
Miletic, N.; Vukovic, Z.; Nastasovic, A.; Loos, K. Macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-Versatile immobilization supports for biocatalysts. J. Mol. Catal. B Enzym. 2009, 56, 196–201, doi:10.1016/j.molcatb.2008.04.012.
[46]
Miletic, N.; Rohandi, R.; Vukovic, Z.; Nastasovic, A.; Loos, K. Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. React. Funct. Polym. 2009, 69, 68–75, doi:10.1016/j.reactfunctpolym.2008.11.001.
[47]
Miletic, N.; Loos, K. Over-stabilization of chemically modified and cross-linked candida antarctica lipase B using various epoxides and diepoxides. Aust. J. Chem. 2009, 62, 799–805, doi:10.1071/CH09033.
[48]
Benaki, D.C.; Anggeli, A.; Chryssikos, G.D.; Yiannopoulos, Y.D.; Kamitsos, E.I.; Brumley, E.; Case, S.T.; Boden, N.; Hamodrakas, S.J. Laser-raman and FT-IR spectroscopic studies of peptide analogues of silkmoth chorion protein segments. Int. J. Biol. Macromol. 1998, 23, 49–59, doi:10.1016/S0141-8130(98)00032-4.