Novel cADPR mimics, which integrate nucleobase, northern and southern ribose modifications were synthesized. The key steps of the synthesis were a Cu(I)-catalyzed Hüisgen [3+2] cycloaddition and a microwave-assisted intramolecular pyrophosphorylation. Preliminary biological investigations showed that these cADPR mimics are membrane-permeating agonists of the calcium signaling pathway. The introduction of chlorine or fluorine at the 2'-position of the southern riboses led to a decrease of activity. The existence of a hydrophobic group on the 3'-OH of the southern riboses does not obviously alter the agonistic activity.
References
[1]
Guse, A.H. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr. Mol. Med. 2004, 4, 239–248.
[2]
Lee, H.C. Cyclic ADP-Ribose and NAADP:Structures, Metabolism and Functions; Kluwer Academic Publisher: Dordrecht, The Netherland, 2002; pp. 217–444.
[3]
Lee, H.C. Multiplicity of Ca2+ messengers and Ca2+ stores: A perspective from cyclic ADP-ribose and NAADP. Curr. Mol. Med. 2004, 4, 227–237.
[4]
Shuto, S.; Matsuda, A. Chemistry of cyclic ADP-ribose and its analogs. Curr. Med. Chem. 2004, 11, 827–845.
[5]
Guse, A.H. Biochemistry, biology, and pharmacology of cyclic adenosine diphosphoribose (cADPR. Curr. Med. Chem. 2004, 11, 847–855.
[6]
Potter, B.V.L.; Walseth, T.F. Medicinal chemistry and pharmacology of cyclic ADP-ribose. Curr. Mol. Med. 2004, 4, 303–311.
[7]
Kudoh, T.; Fukuoka, M.; Ichikawa, S.; Murayama, T.; Ogawa, Y.; Hashii, M.; Higashida, H.; Kunerth, S.; Weber, K.; Guse, A.H.; et al. Synthesis of stable and cell-type selective analogues of cyclic ADP-ribose, a Ca2+-mobilizing second messenger. Structure-activity relationship of the N1-ribose moiety. J. Am. Chem. Soc. 2005, 127, 8846–8855.
[8]
Shuto, S.; Fukuoka, M.; Manikowsky, A.; Ueno, Y.; Nakano, T.; Kuroda, R.; Kuroda, H.; Matsuda, A. A total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca2+-mobilizing second messenger cyclic ADP-ribose. J. Am. Chem. Soc. 2001, 123, 8750–8759.
[9]
Xu, L.; Walseth, T.; Slama, J. Cyclic ADP-ribose analogues containing the methylenebisphosphonate linkage: Effect of pyrophosphate modifications on Ca2+ release activity. J. Med. Chem. 2005, 48, 4177–4181.
[10]
Aarhus, R.; Gee, K.; Lee, H.C. Caged cyclic ADP-ribose. Synthesis and use. J. Biol. Chem. 1995, 270, 7745–7749.
[11]
Zhang, F.; Yamada, S.; Gu, Q.M.; Jing, P.; Sih, C.J. Synthesis and characterization of cyclic ATP-ribose: A potent mediator of calcium release. Bioorg. Med. Chem. Lett. 1996, 6, 1203–1208.
[12]
Qi, N.; Jung, K.; Wang, M.; Na, L.X.; Yang, Z.J.; Zhang, L.R.; Guse, A.H.; Zhang, L.H. A novel membrane-permeant cADPR antagonist modified in the pyrophosphate bridge. Chem. Commun. 2011, 47, 9462–9464.
[13]
Moreau, C.; Wagner, G.K.; Weber, K.; Guse, A.H.; Potter, B.V.L. Strutural determinants for N1/N7 cyclization of nicotinamide hypoxanthine 5'-Dinucleotide (NHD+) derivatives by ADP-ribosyl cyclase from Aplysia californica: Ca2+-Mobilising activity of 8-substituted cyclic inosine 5-diphosphoribose analogues in T-lymphocytes. J. Med. Chem. 2006, 49, 5162–5176.
[14]
Graeff, R.M.; Walseth, T.F.; Hill, T.K.; Lee, H.C. Flourescent analogos of cyclic ADP-ribose: Synthesis, spectral characterization and use. Biochemistry 1996, 35, 379–386.
[15]
Bailey, V.C.; Sethi, J.K.; Fortl, S.M.; Galione, A.; Potter, B.V.L. 7-Deaza cyclic adenosine 5'-diphosphate ribose first example of a Ca2+-mobilizing partial agonist related to cyclic adenosine 5'-diphosphate ribose. Chem. Biol. 1997, 4, 51–56.
[16]
Huang, X.C.; Dong, M.; Liu, J.; Zhang, K.H.; Yang, Z.J.; Zhang, L.R.; Zhang, L.H. Concise syntheses of trifluoromethylated cyclic and acyclic analogues of cADPR. Molecules 2010, 15, 8689–8701.
[17]
Gu, X.F.; Yang, Z.J.; Zhang, L.R.; Kunerth, S.; Fliegert, R.; Weber, K.; Guse, A.H.; Zhang, L.H. Synthesis and biological evaluation of novel membrane-permeant cyclic ADP-ribose mimics: N1-[(5"-O-phosphoryl-ethoxy)-methyl]-5'-O-phosphoryl-inosine 5',5"-cyclicpyrophosphate (cIDPRE) and 8-substituted derivatives. J. Med. Chem. 2004, 47, 5674–5682.
[18]
Xu, J.F.; Yang, Z.J.; Dammermann, W.; Zhang, L.R.; Guse, A.H.; Zhang, L.H. Synthesis and agonist activity of cyclic ADP-ribose analogues with substitution of the northern ribose by ether or alkane chains. J. Med. Chem. 2006, 49, 5001–5012.
[19]
Guse, A.H.; Gu, X.F.; Zhang, L.R.; Weber, K.; Zhang, L.H. A minimal structural analogue of cyclic ADP-ribose. J. Biol. Chem. 2005, 280, 15952–15959.
[20]
Huang, L.J.; Zhao, Y.Y.; Yuan, L.; Min, J.M.; Zhang, L.H. Syntheses and calcium mobilizing evaluations of N1-glycosyl substituted stable mimics of cyclic ADP-ribose. J. Med. Chem. 2002, 45, 5340–5352.
[21]
Kudoh, T.; Fukuoka, M.; Shuto, S.; Matsuda, A. Synthesis and biological activity of cyclic ADP-carbocyclic-ribose analogues:Structure-activity relationship and conformational analysis of N-1-carbocyclic-ribose moiety. Nucleos. Nucleot. Nucleic Acids 2005, 24, 655–658.
[22]
Kudoh, T.; Fukuoka, M.; Ichikawa, S.; Murayama, T.; Ogawa, Y.; Hashii, M.; Higashida, H.; Kunerth, S.; Weber, K.; Guse, A.H.; et al. Synthesis of stable and cell-type selective analogues of cyclic ADP-ribose, a Ca2+-mobilizing second messenger. Structure-activity relationship of the N1-ribose moiety. J. Am. Chem. Soc. 2005, 127, 8846–8855.
[23]
Zhang, B.; Wagner, G.K.; Weber, K.; Garnham, C.; Morgan, A.; Galione, A.; Guse, A.H.; Potter, B.V.L. 2'-Deoxy cyclic adenosine 5'-diphosphate ribose derivatives: Importance of the 2'-hydroxyl motif for the antagonistic activity of 8-substituted cADPR derivatives. J. Med.Chem. 2008, 51, 1623–1636.
[24]
Moreau, C.; Ashamu, G.A.; Bailey, V.C.; Galione, A.; Gusec, A.H.; Potter, B.V.L. Synthesis of cyclic adenosine 5'-diphosphate ribose analogues: A C2' endo/syn “southern” ribose conformation underlies activity at the sea urchin cADPR receptor. Org. Biomol. Chem. 2011, 9, 278–290.
[25]
Li, L.J.; Lin, B.C.; Yang, Z.J.; Zhang, L.R.; Zhang, L.H. A concise route for the preparation of nucleobase-simplified cADPR mimics by click chemistry. Tetrahedron Lett. 2008, 49, 4491–4493.
[26]
Kazuhiro, H.M.G. Synthesis and characterization of oligonucleotides containing formadidopyrimidine lesions and nonhydrolyzable analogues. J. Am. Chem. Soc. 2001, 123, 8638–8637.
[27]
Du, J.F.; Choi, Y.; Chu, C.K. A practical synthesis of L-FMAU from L-arabinose. Nucleos. Nucleot. 1999, 18, 187–195.
[28]
Bruce, G.; Anderson, D.P.L. Isolation, synthesis, and characterization of impurities and degradants from theclofarabine process. Org. Proc. Res. Dev. 2008, 12, 1229–1237, doi:10.1021/op800182x.
[29]
Li, L.J.; Guse, A.H.; Zhang, L.H. Novel nucleobase-simplified cyclic ADP-ribose analogue: A concise synthesis and Ca2+-mobilizing activity in T-lymphocytes. Org. Biol. Chem. 2010, 8, 1843–1848.
[30]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev. 2008, 37, 1546–1557.