全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of petroleum reservoir based on self organizing maps
基于自组织映射网络的油藏表征模型*

Keywords: petroleum reservoir characterization,self organization maps(SOM),clustering analysis,data mining,lithology identification
油藏表征
,自组织映射,聚类分析,数据挖掘,岩性识别,自组织,映射网络,油藏表征,表征模型,maps,based,reservoir,petroleum,性能,操作,结果,仿真实验,测井数据,地区,泾川,甘肃镇原,技术模型,问题,结合,处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

SOM neural networks can implement feature preserving, dimension reduction and data visualization. This paper proposed the SOM neural network for the petroleum parameter characterization. Simulation on the well-log data of Zhenyuan- Jingchuan area, in Gansu, shows that this algorithm is practicable and effective for actual reservoir modeling.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133