%0 Journal Article %T Characterization of petroleum reservoir based on self organizing maps
基于自组织映射网络的油藏表征模型* %A CHENG Guo jian %A LIU Shu ying %A
程国建 %A 刘淑英 %J 计算机应用研究 %D 2007 %I %X SOM neural networks can implement feature preserving, dimension reduction and data visualization. This paper proposed the SOM neural network for the petroleum parameter characterization. Simulation on the well-log data of Zhenyuan- Jingchuan area, in Gansu, shows that this algorithm is practicable and effective for actual reservoir modeling. %K petroleum reservoir characterization %K self organization maps(SOM) %K clustering analysis %K data mining %K lithology identification
油藏表征 %K 自组织映射 %K 聚类分析 %K 数据挖掘 %K 岩性识别 %K 自组织 %K 映射网络 %K 油藏表征 %K 表征模型 %K maps %K based %K reservoir %K petroleum %K 性能 %K 操作 %K 结果 %K 仿真实验 %K 测井数据 %K 地区 %K 泾川 %K 甘肃镇原 %K 技术模型 %K 问题 %K 结合 %K 处理 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=A9D9BE08CDC44144BE8B5685705D3AED&aid=A375D94749B999E3&yid=A732AF04DDA03BB3&vid=B91E8C6D6FE990DB&iid=F3090AE9B60B7ED1&sid=E1D946F217E3B046&eid=D9AE183D3F5C3C75&journal_id=1001-3695&journal_name=计算机应用研究&referenced_num=0&reference_num=7