Pine wilt disease (PWD), a destructive disease for pine trees, is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z .?marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA). RosA showed effective nematicidal activity, of which the LC 50 (50% lethal concentration) to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z . marina, single factor experiments and an L 9 (3 4) orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v). The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight). The crude extracts of Zostera marina (10 mg/mL) and RosA (1 mg/mL) also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z . marina.
References
[1]
Zhao, B.G.; Li, R.G. The roles of bacteria associated with the pine wood nematode in pathogenecity and toxin-production related to pine wilt. In Pine Wilt Disease; Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer: Tokyo, Japan, 2008; pp. 250–259.
[2]
Zhao, B.G.; Wang, H.L.; Han, S.F.; Han, Z.M. Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China. Nematology 2003, 5, 899–906, doi:10.1163/156854103773040817.
[3]
Oh, W.S.; Jeong, P.Y.; Joo, H.J.; Lee, J.E.; Moon, Y.S.; Cheon, H.M.; Kim, J.H.; Lee, Y.U.; Shim, Y.H.; Paik, Y.K. Identification and characterization of a dual-acting antinematodal agent against the pinewood nematode, Bursaphelenchus xylophilus. PLoS One 2009, 4, e7593.
[4]
Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2008, 56, 7316–7320, doi:10.1021/jf800780f.
[5]
Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279.
[6]
Shi, J.; Li, Z.; Nitoda, T.; Izumi, M.; Kanzakia, H.; Baba, N.; Kawazu, K.; Nakajima, S. Antinematodal activities of ingenane diterpenes from Euphorbia kansui and their derivatives against the pine wood nematode (Bursaphelenchus xylophilus). Z. Naturforsch. C 2008, 63, 59–65.
[7]
Zhang, H.M.; Wang, G.L.; Bai, C.Q.; Liu, P.; Liu, Z.M.; Liu, Q.Z.; Wang, Y.Y.; Liu, Z.L.; Du, S.S.; Deng, Z.W. A new eudesmane sesquiterpene glucoside from Liriope muscari fibrous roots. Molecules 2008, 16, 9017–9024.
[8]
Guo, Y.; Qin, L.; Qiao, C.; Guo, D.; Zhao, B.; Yue, T.; Li, R. Inhibition effects of extract of fennel (Foeniculum vulgare Mill) on pine wood nematode and bacteria it carries. Afr. J. Microbiol. Res. 2012, 6, 1837–1843.
[9]
Seki, H.; Yokohama, Y. Experimental decay of eelgrass (Zostera marina) into detrital particles. Arch. Hydrobiol. 1978, 84, 109–119.
[10]
Gavriljuk, V.B.; Gavriljuk, B.K. Preparation for preventing and treating capillary cutaneous lesions (teleangioectasias). Russia Patent RU2242217, 20 December 2004.
[11]
Harrison, P.G. Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar. Biol. 1982, 67, 225–230, doi:10.1007/BF00401288.
[12]
Lu, Y.R.; Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 1999, 51, 91–94.
[13]
Park, S.R.; Li, W.T.; Kim, S.H.; Kim, J.W.; Lee, K.S. A comparison of methods for estimating the productivity of Zostera marina. J. Ecol. Field Biol. 2010, 33, 59–65, doi:10.5141/JEFB.2010.33.1.059.
[14]
Pilavtepe, M.; Sargin, S.; Celiktas, M.S.; Yesil-Celiktas, O. An integrated process for conversion of Zostera marina residues to bioethanol. J. Supercrit. Fluids 2012, 68, 117–122, doi:10.1016/j.supflu.2012.04.019.
[15]
Dolgii, O.D.; Petrov, M.V.; Malenok, P.I.; Luzanov, M.E.H.; Mekhonoshin, A.A.; Pakhomov, A.I. Method of preparing pectin from sea algae. Russia Patent RU2132696C1, 10 July 1999.
Kawasaki, W.; Matsui, K.; Akakabe, Y.; Itai, N.; Kajiwar, T. Volatiles from Zostera marina. Phytochemistry 1998, 47, 27–29.
[18]
Achamlale, S.; Rezzonico, B.; Grignon-Dubois, M. Rosmarinic acid from beach waste: Isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chem. 2009, 113, 878–883, doi:10.1016/j.foodchem.2008.07.040.
[19]
Lin, Y.L.; Chang, Y.; Kuo, Y.H.; Shiao, M.S. Anti-lipid-peroxidative principles from Tournefortia sarmentosa. J. Nat. Prod. 2002, 65, 745–747, doi:10.1021/np010538y.
[20]
Fujimoto, A.; Masuda, T. Antioxidation mechanism of rosmarinic acid, identification of an unstable quinone derivative by the addition of odourless thiol. Food Chem. 2012, 132, 901–906, doi:10.1016/j.foodchem.2011.11.062.
[21]
Swarup, V.; Ghosh, J.; Ghosh, S.; Saxena, A.; Basu, A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 2007, 51, 3367–3370.
[22]
Stephanie, D.; Nola, C.; Bhesh, B.; Gary, A.D. In vitro antibacterial activity of Australian native herb extracts against food-related bacteria. Food Control 2006, 17, 929–932, doi:10.1016/j.foodcont.2005.06.005.
[23]
Shan, B.; Cai, Y.Z.; Brooks, D. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem. 2008, 109, 530–537, doi:10.1016/j.foodchem.2007.12.064.
Lee, J.; Kim, Y.S.; Park, D. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem. Pharmacol. 2007, 74, 960–968.
[26]
Ozturk, M.; Duru, M.E.; Ince, B.; Harmandar, M.; Topcu, G. A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chem. 2010, 123, 1352–1356, doi:10.1016/j.foodchem.2010.06.021.