An extract of the red alga, Neorhodomela aculeata, exhibited antiviral activity against human rhinoviruses. Bioassay-guided purification was performed to yield six compounds, which were subsequently identified as lanosol ( 1) and five polybromocatechols ( 2– 6) by spectroscopic methods, including 1D and 2D NMR and mass spectrometric analyses. Structurally, all of these compounds, except compound 5, contain one or two 2,3-dibromo-4,5-dihydroxyphenyl moieties. In a biological activity assay, compound 1 was found to possess antiviral activity with a 50% inhibitory concentration (IC 50) of 2.50 μg/mL against HRV2. Compound 3 showed anti-HRV2 activity, with an IC 50 of 7.11 μg/mL, and anti-HRV3 activity, with an IC 50 of 4.69 μg/mL, without demonstrable cytotoxicity at a concentration of 20 μg/mL. Collectively, the results suggest that compounds 1 and 3 are candidates for novel therapeutics against two different groups of human rhinovirus.
References
[1]
Lee, Y.; Kang, S. A Catalogue of the Seaweeds in Korea, 1st ed.; Jeju National University: Jeju, Korea, 2002; p. 662.
[2]
Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21, doi:10.1016/j.carbpol.2010.10.062.
[3]
Guven, K.C.; Percot, A.; Sezik, E. Alkaloids in marine algae. Mar. Drugs 2010, 8, 269–284, doi:10.3390/md8020269.
[4]
El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25, doi:10.1016/j.jsps.2009.12.001.
[5]
Lee, J.W.; Oh, B.G.; Lee, H.B. Marine benthic algal community at Padori, west coast of Korea. Algae 2000, 15, 111–117.
[6]
Liu, M.; Hansen, P.E.; Lin, X. Bromophenols in marine algae and their bioactivities. Mar. Drugs 2011, 9, 1273–1292, doi:10.3390/md9071273.
[7]
Han, L.J.; Xu, N.J.; Shi, J.G.; Yan, X.J.; Zeng, C.K. Isolation and pharmacological activities of bromophenols from Rhodomela confervoides. Chin. J. Oceanol. Limnol. 2005, 23, 226–229, doi:10.1007/BF02894243.
[8]
Lee, H.S.; Lee, T.H.; Lee, J.H.; Chae, C.S.; Chung, S.C.; Shin, D.S.; Shin, J.; Oh, K.B. Inhibition of the pathogenicity of magnaporthegrisea by bromophenols, isocitratelyase inhibitors, from the red alga Odonthalia corymbifer. J. Agric. Food Chem. 2007, 55, 6923–6928, doi:10.1021/jf071125r.
[9]
Shoeib, N.A.; Bibby, M.C.; Blunden, G.; Linley, P.A.; Swaine, D.J.; Wheelhouse, R.T.; Wright, C.W. In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia Lanosa and some novel synthetic isomers. J. Nat. Prod. 2004, 67, 1445–1449, doi:10.1021/np0305268.
[10]
Lim, C.S.; Jin, D.Q.; Sung, J.Y.; Lee, J.H.; Choi, H.G.; Ha, I.; Han, J.S. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol. Pharm. Bull. 2006, 29, 1212–1216, doi:10.1248/bpb.29.1212.
[11]
Makela, M.J.; Puhakka, T.; Ruuskanen, O.; Leinonen, M.; Saikku, P.; Kimpimaki, M.; Blomqvist, S.; Hyypia, T.; Arstila, P. Viruses and bacteria in the etiology of the common cold. J. Clin. Microbiol. 1998, 36, 539–542.
[12]
Elkhatieb, A.; Hipskind, G.; Woerner, D.; Hayden, F.G. Middle ear abnormalities during natural rhinovirus colds in adults. J. Infect. Dis. 1993, 168, 618–621, doi:10.1093/infdis/168.3.618.
[13]
Pitkaranta, A.; Arruda, E.; Malmberg, H.; Hayden, F.G. Detection of rhinovirus in sinus brushings of patients with acute community-acquired sinusitis by reverse transcription-PCR. J. Clin. Microbiol. 1997, 35, 1791–1793.
[14]
Ledford, R.M.; Collett, M.S.; Pevear, D.C. Insights into the genetic basis for natural phenotypic resistance of human rhinoviruses to pleconaril. Antivir. Res. 2005, 68, 135–138.
[15]
Al-Nakib, W.; Tyrrell, D.A.J. Drugs against rhinoviruses. J. Antimicrob. Chemother. 1992, 30, 115–117, doi:10.1093/jac/30.2.115.
[16]
Andries, K.; Dewindt, B.; Snoeks, J.; Wouters, L.; Moereels, H.; Lewi, P.J.; Janssen, P.A.J. Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J. Virol. 1990, 64, 1117–1123.
[17]
Choi, H.J.; Kim, J.H.; Lee, C.H.; Ahn, Y.J.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antivir. Res. 2009, 81, 77–81.
[18]
Weinstein, B.; Rold, T.L.; Harrell, C.E., Jr.; Burns, M.W., III; Waaland, J.R. Reexamination of the bromophenols in the red alga Rhodomela Larix. Phytochem. 1975, 14, 2667–2670.
[19]
Kurata, K.; Amiya, T. Tow new bromophenols from the red alga, Rhodomela larix. Chem. Lett. 1977, 12, 1435–1438, doi:10.1246/cl.1977.1435.
[20]
Katsui, N.; Suzuki, Y.; Kitamura, S.; Irie, T. 5,6-Dibromoprotocatechualdehyde and 2,3-dibromo-4,5-dihydroxybenzyl methyl ether: New dibromophenols from Rhodomela larix. Tetrahedron 1967, 23, 1185–1188, doi:10.1016/0040-4020(67)85068-3.