全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2012 

Bioavailability of Metal Ions and Evolutionary Adaptation

DOI: 10.3390/life2040274

Keywords: metalloproteins, Fenton reaction, bioavailability, aerobic respiration, photosynthesis, organelle

Full-Text   Cite this paper   Add to My Lib

Abstract:

The evolution of life on earth has been a long process that began nearly 3,5 x 10 9 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O 2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

References

[1]  Dalrymple, G.B. The age of the Earth in the twentieth century: A problem (mostly) solved. Geol. Soc. SP.?2001, 190, 205–221, doi:10.1144/GSL.SP.2001.190.01.14.
[2]  Allegre, C.J.; Manhes, G.; Gopel, C. The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett.?2008, 267, 386–398, doi:10.1016/j.epsl.2007.11.056.
[3]  Tian, F.; Toon, O.B.; Pavlov, A.A.; De Sterck, H. A Hydrogen-Rich Early Earth Atmosphere. Science?2005, 308, 1014–1017, doi:10.1126/science.1106983.
[4]  Raymond, S.N.; Quinn, T.; Lunine, J.I. Making other earths: Dynamical simulations of terrestrial planet formation and water delivery. Icarus?2004, 168, 1–17, doi:10.1016/j.icarus.2003.11.019.
[5]  Abe, Y. Physical state of the very early Earth. Lithos?1993, 30, 223–235, doi:10.1016/0024-4937(93)90037-D.
[6]  Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature?2001, 409, 1092–1101, doi:10.1038/35059215.
[7]  Cleaves, H.J.; Miller, S.L. Oceanic protection of prebiotic organic compounds from UV radiation. Proc. Natl. Acad. Sci. USA?1998, 95, 7260–7263, doi:10.1073/pnas.95.13.7260.
[8]  Grotzinger, J.; Knoll, A. Stromatolites in precrambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci.?1999, 27, 313–358, doi:10.1146/annurev.earth.27.1.313.
[9]  Nisbet, E.G.; Sleep, N.H. The habitat and nature of early life. Nature?2001, 409, 1083–1091, doi:10.1038/35059210.
[10]  Halliday, A.N. A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. A?2008, 366, 4163–4181, doi:10.1098/rsta.2008.0209.
[11]  Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature?2001, 409, 175–178, doi:10.1038/35051550.
[12]  Martin, W.; Russell, M. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B?2007, 362, 1887–1925, doi:10.1098/rstb.2006.1881.
[13]  Kopp, R.; Kirschvink, J.; Hilburn, I.; Nash, C. The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA?2005, 102, 11131–11136, doi:10.1073/pnas.0504878102.
[14]  Brocks, J.; Logan, G.; Buick, R.; Summons, R. Archean molecular fossils and the early rise of eukaryotes. Science?1999, 285, 1033–1036.
[15]  Kump, L.; Mark, E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature?2007, 448, 1033–1036, doi:10.1038/nature06058.
[16]  Holland, H. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta?2002, 66, 3811–3826, doi:10.1016/S0016-7037(02)00950-X.
[17]  Gaillard, F.; Scaillet, B.; Arndt, N. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature?2011, 478, 229–232.
[18]  Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; Kaufman, A.; Gordon, G.; Scott, C.; Garvin, J.; Roger, B. A Whiff of Oxygen Before the Great Oxidation Event? Science?2007, 317, 1903–1906.
[19]  Castresana, J.; Saraste, M. Evolution of energetic metabolism: The respiration-early hypothesis. Trends Biochem. Sci.?1995, 20, 443–448, doi:10.1016/S0968-0004(00)89098-2.
[20]  Towe, K. Aerobic respiration in the Archean? Nature?1990, 348, 54–56.
[21]  Kump, L. The rise of atmospheric oxygen. Nature?2008, 451, 277–278, doi:10.1038/nature06587.
[22]  Canfield, D. The early history of atmospheric oxygen: Homage to Robert A. Garrels. Annu. Rev. Earth Plan. Sci.?2005, 33, 1–36, doi:10.1146/annurev.earth.33.092203.122711.
[23]  Hambrey, M.; Harland, W. Earth’s Pre-Pleistocene Glacial Record; Cambridge Univ. Press: Cambridge, U.K., 1981.
[24]  Chumakov, N.; Elston, D. The paradox of late proterozoic glaciations at low latitudes. Episodes?1989, 12, 115–120.
[25]  Elewa, A.; Joseph, R. The History, Origins, and Causes of Mass Extinctions. J. Cosmol.?2009, 2, 201–220.
[26]  Pedone, E.; Bartolucci, S.; Fiorentino, G. Sensing and adapting to environmental stress: The archeal tactic. Front. Biosci.?2004, 9, 2909–2926, doi:10.2741/1447.
[27]  Fausto Da Silva, J.; Williams, R. The biological chemistry of the elements: The inorganic chemistry of life; Oxford University Press, 1997.
[28]  Volbeda, A.; Fontecilla-Camps, J. Structure–function relationships of nickel–iron sites in hydrogenase and a comparison with the active sites of other nickel–iron enzymes. Coordin. Chem. Rev.?2005, 249, 1609–1619, doi:10.1016/j.ccr.2004.12.009.
[29]  Bekker, A.; Slack, J.; Planavsky, N.; Krape?, B.; Hofmann, A.; Konhauser, K.; Rouxel, O. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Process. Econ. Geol.?2010, 105, 467–508, doi:10.2113/gsecongeo.105.3.467.
[30]  Uniprot Data Base. Available online: http://www.uniprot.org/ (accessed on 10 October 2012).
[31]  Haber, F.; Weiss, J. über die Katalyse des Hydroperoxydes (On the catalysis of hydroperoxide). Naturwissenschaften?1932, 20, 948–950, doi:10.1007/BF01504715.
[32]  Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans.?1894, 65, 899–911, doi:10.1039/ct8946500899.
[33]  Letelier, M.; Sanchez-Jofre, S.; Peredo-Silva, L.; Cortes-Troncoso, J.; Aracena-Parks, P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem-Biol. Interact.?2010, 188, 220–227.
[34]  Kremer, M. Promotion of the Fenton reaction by Cu2+ ions: Evidence for intermediates. Int. J. Chem. Kinet.?2006, 38, 725–736.
[35]  Pecci, L.; Montefoschi, G.; Cavallini, D. Some new details of the copper-hydrogen peroxide interaction. Biochem. Biophys. Res. Co.?1997, 235, 264–267, doi:10.1006/bbrc.1997.6756.
[36]  Dameron, C.; Harrison, M. Mechanisms for protection against copper toxicity. Am. J. Clin. Nutr.?1998, 67, 1091S–1097S.
[37]  Rae, L.; Schmidt, P.; Pufahl, R.; Culotta, V.; O’Halloran, T. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science?1999, 284, 805–808.
[38]  Yang, L.; McRae, R.; Henary, M.; Patel, R.; Lai, B.; Vogt, S.; Fahrni, C. Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc. Natl. Acad. Sci. USA?2005, 102, 11179–11184.
[39]  La Fontaine, S.; Mercer, J. Trafficking of the copper ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch. Biochem. Biophys.?2007, 463, 149–167, doi:10.1016/j.abb.2007.04.021.
[40]  Jordan, I.; Natale, D.; Koonin, E.; Galperin, M. Independent evolution of Heavy Metal Associated domains in copper chaperones and copper transporting ATPases. J. Mol. Evol.?2001, 53, 622–633, doi:10.1007/s002390010249.
[41]  Hubbard, T.; Murzin, A.; Brenner, S.; Chlothia, C. SCOP: A structural classification of protein databases. Nucleic Acids Res.?1997, 25, 236–239.
[42]  Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; O'Halloran, T. Solution structure of the yeast copper transporter domain Ccc2a in the Apo and Cu(I)-loaded states. J. Biol. Chem.?2001, 276, 8415–8426.
[43]  Breuer, W.; Shvartsman, M.; Cabantchik, I. Intracellular labile iron. Int. J. Biochem. Cell. B.?2008, 40, 350–354.
[44]  Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol.?2010, 14, 211–217, doi:10.1016/j.cbpa.2010.01.003.
[45]  Shi, H.; Bencze, K.; Stemmler, T.; Philpott, C. A cytosolic iron chaperone that delivers iron to ferritin. Science?2008, 320, 1207–1210.
[46]  Richardson, D.; Lane, D.; Becker, E.; Huang, M.; Whitnall, M.; Rahmanto, Y.; Sheftel, A.; Ponka, P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. USA?2010, 107, 10775–10782.
[47]  Andrews, S. The ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta?2010, 1800, 691–705.
[48]  Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta?2009, 1790, 589–599, doi:10.1016/j.bbagen.2008.09.004.
[49]  Foster, A.; Robinson, N. Promiscuity and preferences of metallothioneins: The cell rules. BMC Biology?2011, 9, 25, doi:10.1186/1741-7007-9-25.
[50]  Capdevilla, M.; Atrian, S. Metallothionein protein evolution: a miniassay. J. Biol. Inorg. Chem.?2011, 16, 977–989, doi:10.1007/s00775-011-0798-3.
[51]  Bell, S.; Vallee, B. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chembiochem?2009, 10, 55–62, doi:10.1002/cbic.200800511.
[52]  Klaassen, C.; Liu, J.; Diwan, B. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharm.?2009, 238, 215–220, doi:10.1016/j.taap.2009.03.026.
[53]  Kojima, N.; Young, C.; Bates, G. Failure of metallothionein to bind iron or act as an iron mobilizing agent. Biochim. Biophys. Acta?1982, 716, 273–275, doi:10.1016/0304-4165(82)90278-1.
[54]  Nelson, D.; Cox, M. Lehninger Principles of Biochemistry. In Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins, 5th Ed. ed.; W. H. Freeman Company: New York, NY, USA, 2008.
[55]  Decker, H.; Terwillinger, N. Cops and robbers: Putative evolution of copper oxygen-binding proteins. J. Exp. Biol.?2000, 203, 1777–1782.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133