A third-order single-bit CT-ΔΣ modulator for generic biomedical applications is implemented in a 0.15 μm FDSOI CMOS process. The overall power efficiency is attained by employing a single-bit ΔΣ and a subthreshold FDSOI process. The loop-filter coefficients are determined using a systematic design centering approach by accounting for the integrator non-idealities. The single-bit CT-ΔΣ modulator consumes 110 μW power from a 1.5 V power supply when clocked at 6.144 MHz. The simulation results for the modulator exhibit a dynamic range of 94.4 dB and peak SNDR of 92.4 dB for 6 kHz signal bandwidth. The figure of merit (FoM) for the third-order, single-bit CT-ΔΣ modulator is 0.271 pJ/level.
References
[1]
Van Helleputte, N. A flexible system-on-chip (SoC) for biomedical signal acquisition. Sens. Actuators A. Phys. 2008, 142, 361–368, doi:10.1016/j.sna.2007.04.026.
[2]
Norsworthy, S.; Schreier, R.; Temes, G. Delta-Sigma Data Converters: Theory, Design, and Simulation; IEEE Press: New York, NY, USA, 1996.
[3]
Gerfers, G.; Ortmanns, M.; Manoli, Y. A 1.5-V 12-bit power-efficient continuous-time third-order ΔΣ modulator. IEEE J. Solid State Circuits 2003, 38, 1343–1352, doi:10.1109/JSSC.2003.814432.
[4]
Schreier, R.; Temes, G. Understanding ΔΣ Data Converters; IEEE Press: Piscataway, NJ, USA, 2005.
[5]
Balagopal, S.; Roy, R.M.; Saxena, V. A 110 μW single-bit continuous-time ΔΣ converter with 92.5dB dynamic range. In Proceedings of 2010 IEEE Dallas Circuits and Systems Workshop (DCAS), Richardson, TX, USA, 2010; pp. 1–4.
[6]
Ortmanns, M.; Manoli, Y.; Gerfers, G. A continuous-time sigma-delta modulator with reduced jitter sensitivity. In Proceedings of IEEE European Solid-State Circuits Conference, Florence, Italy, 2002.
[7]
Pavan, S.; Krishnapura, N.; Pandarinathan, R.; Sankar, P. A power optimized continuous-time ΔΣ ADC for audio applications. IEEE J. Solid State Circuits 2008, 43, 351–360, doi:10.1109/JSSC.2007.914263.
[8]
Zhiheng, C.; Tongyu, S.; Shouli, Y. A 14 mW 2.5 MS/s 14 bit ΣΔ Modulator Using Split-Path Pseudo-Differential Amplifiers. IEEE J. Solid State Circuits 2007, 42, 2169–2179, doi:10.1109/JSSC.2007.905241.
[9]
Geerts, Y.; Marques, A.M.; Steyaert, M.S.J.; Sansen, W. A 3.3 V, 15 bit, Delta-Sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications. IEEE J. Solid State Circuits 1999, 34, 927–936, doi:10.1109/4.772407.
[10]
Sankar, P.; Pavan, S. Analysis of integrator nonlinearity in a class of continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Exp. Briefs 2007, 54, 1125–1129.
[11]
Pavan, S. SystematicDesign Centering of Continuous Time Oversampling Converters. IEEE Trans. Circuits Syst. II 2010, 57, 158–162, doi:10.1109/TCSII.2010.2041814.
[12]
Lee, W.L. A novel higher-order interpolative modulator topology for high resolution oversampling A/D convertersMaster’s thesis, Massachusetts Institute of Technology, MA, USA, June 1987.
Cherry, J.; Snelgrove, W. Excess loop delay in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1999, 46, 376–389, doi:10.1109/82.755409.
[15]
Reddy, K.; Pavan, S. Fundamental limitations of continuous-time delta-sigma modulators due to clock jitter. IEEE Trans. Circuits Syst. I Reg. Pap. 2007, 54, 2184–2194, doi:10.1109/TCSI.2007.905648.
[16]
Saxena, V.; Baker, R.J. Compensation of CMOS Op-Amps using Split-Length Transistors. In Proceedings of the 51st IEEE Midwest Symposium on Circuits and Systems, Knoxville, TN, USA; 2008; pp. 109–112.
[17]
Mita, R.; Palumbo, G.; Pennisi, S. Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Trans. Circuits Syst. II Exp. Briefs 2003, 50, 227–233, doi:10.1109/TCSII.2003.811437.
[18]
Gerfers, F.; Ortmanns, M.; Manoli, Y. A 1.5-V 12-bit power-efficient continuous-time third-order ΣΔ modulator. IEEE J. Solid State Circuits 2003, 38, 1343–1352, doi:10.1109/JSSC.2003.814432.
[19]
Ortmanns, M.; Manoli, Y.; Gerfers, F. A continuous-time sigmadelta modulator with reduced jitter sensitivity. In Proceedings of IEEE European and Solid-State Circuits Conference, Florence, Italy, 2002; pp. 287–290.
[20]
Baggini, B.; Basedau, P.; Becker, R.; Bode, P.; Burdenski, R.; Esfahani, F.; Groeneweg, W.; Helfenstein, M.; Lampe, A.; Ryter, R.; Stephan, R. Baseband and audio mixed-signal front-end IC for GSM/EDGE applications. IEEE J. Solid State Circuits 2006, 41, 1364–1379, doi:10.1109/JSSC.2006.874343.
[21]
Nguyen, K.; Adams, R.; Sweetland, K.; Chen, H. A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio. IEEE J. Solid State Circuits 2005, 40, 2408–2415, doi:10.1109/JSSC.2005.856284.
[22]
Dorrer, L.; Kuttner, F.; Santner, A.; Kropf, C.; Hartig, T.; Torta, P.; Greco, P. A 2.2 mW, continuous-time sigma-delta ADC for voice coding with 95 dB dynamic range in a 65 nm CMOS process. In Proceedings of IEEE European and Solid-State Circuits Conference, Montreux, Switzerland, 2006; pp. 195–198.