To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.
References
[1]
Matsuura, M.; Nakajima, N.; Araki, K.; Ito, K. The usefulness of radiation therapy for hepatocellular carcinoma. Hepatogastroenterology 1998, 45, 791–796. 9684136
[2]
Hawkins, M.A.; Dawson, L.A. Radiation therapy for hepatocellular carcinoma: From palliation to cure. Cancer 2006, 106, 1653–1663, doi:10.1002/cncr.21811.
[3]
Dawson, L.A. The evolving role of radiation therapy in hepatocellular carcinoma. Cancer Radio ther. 2008, 12, 96–101, doi:10.1016/j.canrad.2007.12.007.
[4]
Ganne-Carrié, N.; Trinhet, J.C. Systemic treatment of hepatocellular carcinoma. Eur. J. Gastro Enterol. Hepatol. 2004, 16, 275–281, doi:10.1097/00042737-200403000-00005.
[5]
Okada, S. Chemotherapy in hepatocellular carcinoma. Hepatogastroenterology 1998, 45 (Suppl. 3), 1259–1263. 9730385
[6]
Llovet, J.M. Updated treatment approach to hepatocellular carcinoma. J. Gastroenterol. 2005, 40, 225–235, doi:10.1007/s00535-005-1566-3.
[7]
Goldhirsch, A.; Gelber, R.D. Endocrine therapies of breast cancer. Semin. Oncol. 1996, 23, 494–505. 8757275
[8]
Kimmick, G.G.; Muss, H.B. Endocrine therapy in metastatic breast cancer. Cancer Treat. Res. 1998, 94, 231–254, doi:10.1007/978-1-4615-6189-7_13.
[9]
Yamashita, H. Current research topics in endocrine therapy for breast cancer. Int. J. Cli. Oncol. 2008, 13, 380–383, doi:10.1007/s10147-008-0818-7.
[10]
Buscarini, L.; Buscarini, E.; di Stasi, M.; Vallisa, D.; Quaretti, P.; Rocca, A. Percutaneous radiofrequency ablation of small hepatocelluler carcinoma: long-term results. Eur. Radiol. 2001, 11, 914–921, doi:10.1007/s003300000659.
[11]
Ni, Y.; Mulier, S.; Miao, Y.; Michel, L.; Marchal, G. A review of the general aspects of radio-frequency ablation. Abdom. Imaging 2005, 30, 381–400, doi:10.1007/s00261-004-0253-9.
[12]
Lencioni, R.; Della Pina, C.; Barttolozzi, C. Percutaneous image-guided radiofrequency ablation in the therapeutic management of hepatocellular carcinoma. Abdom. Imaging 2005, 30, 401–408, doi:10.1007/s00261-004-0254-8.
[13]
Crocetti, L.; Lencioni, R. Thermal ablation of hepatocellular carcinoma. Cancer Imaging 2008, 8, 19–26, doi:10.1102/1470-7330.2008.0004.
[14]
Ayav, A.; Germain, A.; Marchal, F.; Tierris, I.; Laurent, V.; Bazin, C.; Yuan, Y.; Robert, L.; Brunaud, L.; Bresler, L. Radiofrequency ablation of unresectable liver tumors: factors associated with incomplete ablation or local recurrence. Am. J. Surg. 2010, 200, 435–439, doi:10.1016/j.amjsurg.2009.11.009.
[15]
Lam, V.W.; Ng, K.K.; Chok, K.S.; Cheung, T.T.; Yuen, J.; Tung, H.; Tso, W.K.; Fan, S.T.; Poon, R.T. Risk factors and prognostic factors of local reccurrence after radiofrequency ablation of hepatocellular carcinoma. J. Am. Coll. Surg. 2008, 207, 20–29, doi:10.1016/j.jamcollsurg.2008.01.020.
[16]
Akahane, M.; Koga, H.; Kato, N.; Yamada, H.; Uozumi, K.; Tateishi, R.; Teratani, T.; Shiina, S.; Ohtomo, K. Complications of percutaneous radiofrequency ablation for hepato-cellular caicinoma: Imaging spectrum and management. Radiogr. 2005, 25 (Suppl. 1), 57–68, doi:10.1148/rg.25si055505.
[17]
Maehara, T.; Konishi, K.; Kamimori, T.; Aono, H.; Naohara, T.; Kikkawa, H.; Watanabe, Y.; Kawachi, K. Heating of ferrite powder by an AC magnetic field for local hyperthermia. Jpn. J. Appl. Phys. 2002, 41, 1620–1621, doi:10.1143/JJAP.41.1620.
[18]
Naohara, T.; Aono, H.; Maehara, T.; Watanabe, Y.; Hirazawa, H.; Matsutomo, S. Computer simulation of heat generation ability in AC magnetic field. In Proceedings of International Symposium Electromagnetic Processing Materials, Dresden, Germany, 19–23 October 2009; pp. 193–196.
[19]
Watanabe, Y.; Sato, K.; Yukumi, S.; Yoshida, M.; Yamamoto, Y.; Doi, T.; Sugishita, H.; Naohara, T.; Maehara, T.; Aono, H.; Kawachi, K. Development of a second radiofrequency ablation using sintered MgFe2O4 needles and alternating magnetic field for human cancer therapy. Bio-Med. Mater. Eng. 2009, 19, 101–110.
[20]
Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; Willey IEEE Press: Hoboken, NJ, USA, 2008; pp. 234–237.
[21]
Naohara, T.; Aono, H.; Hirazawa, H.; Maehara, T.; Watanabe, Y.; Matsutomo, S. Heat generation ability in AC magnetic field of needle-type Ti-coated mild steel for ablation cancer therapy. Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1582–1588, doi:10.1108/03321641111152739.
[22]
Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine: Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer-Verlag: New York, NY, USA, 2001; pp. 14–19.
[23]
Van Noort, R. Titanium: The implant material of today. J. Mate. Sci. 1987, 22, 3801–3811, doi:10.1007/BF01133326.
[24]
Skonski, R. Simple Model of Magnetism; Oxford University Press: New York, NY, USA, 2008; pp. 82–83.