A molecularly imprinted polymer (MIP) was synthesized by non-covalent imprinting polymerization using irinotecan as template. Methacrylic acid and 4-vinylpyridine were selected as functional monomers. An optimized procedure coupled to LC-PDA analysis was developed for the selective solid-phase extraction of irinotecan from various organic media. A specific capacity of 0.65 μmol?g?1 for the MIP was determined. The high specificity of this MIP was demonstrated by studying the retention behaviour of two related compounds, camptothecin and SN-38. This support was applied for the extraction of irinotecan from human serum samples.
References
[1]
Rothenberg, M.L. Irinotecan (CPT-11): Recent developments and future directions-colorectal cancer and beyond. Oncologist 2001, 6, 66–80, doi:10.1634/theoncologist.6-1-66.
[2]
Kawato, Y.; Aonuma, M.; Hirota, Y.; Kuga, H.; Sato, K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991, 51, 4187–4191.
[3]
Hageman, M.J.; Morozowich, W. Case study: Irinotecan (CPT-11), a water-soluble prodrug of SN-38. In Biotechnology: Pharmaceutical Aspects; Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W., Eds.; Springer: New-York, NY, USA, 2007; Volume 5, pp. 569–579.
[4]
Rivory, L.P.; Bowles, M.R.; Robert, J.; Pond, S.M. Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem. Pharmacol. 1996, 52, 1103–1111, doi:10.1016/0006-2952(96)00457-1.
[5]
Khanna, R.; Morton, C.L.; Danks, M.K.; Potter, P.M. Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res. 2000, 60, 4725–4728.
[6]
Mathijssen, R.H.; van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 2001, 7, 2182–2194.
[7]
Gupta, E.; Lestingi, T.M.; Mick, R.; Ramirez, J.; Vokes, E.E.; Ratain, M.J. Metabolic fate of irinotecan in humans: Correlation of glucuronidation with diarrhea. Cancer Res. 1994, 54, 3723–3725.
[8]
Lyer, L.; King, C.D.; Whitington, P.F.; Green, M.D.; Roy, S.K.; Tephly, T.R.; Coffman, B.L.; Ratain, M.J. Genetic predisposition to the metabolism of irinotecan (CPT-11). J. Clin. Invest. 1998, 101, 847–854, doi:10.1172/JCI915.
[9]
Fassberg, J.; Stella, V.J. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 1992, 81, 676–684, doi:10.1002/jps.2600810718.
[10]
Sano, K.; Yoshikawa, M.; Hayasaka, S.; Satake, K.; Ikegami, Y.; Yoshida, H.; Ishikawa, T.; Sawada, S.; Tanabe, S. Simple non-ion-paired high-performance liquid chromatographic method for simultaneous quantitation of carboxylate and lactone forms of 14 new camptothecin derivatives. J. Chromatogr. B 2003, 795, 25–34, doi:10.1016/S1570-0232(03)00485-9.
[11]
Slichenmeyer, W.J.; Rowinsky, E.K.; Donehower, R.C.; Kaufmann, S.H. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst. 1993, 85, 271–291, doi:10.1093/jnci/85.4.271.
[12]
Mullangi, R.; Ahlawat, P.; Srinivas, N.R. Irinotecan and its active metabolite, SN-38: Review of bioanalytical methods and recent update from clinical pharmacology perspective. Biomed. Chromatogr. 2010, 24, 104–123, doi:10.1002/bmc.1345.
[13]
Rivory, L.P.; Chatelut, E.; Canal, P.; Mathieu-Boué, A.; Robert, J. Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res. 1994, 54, 6330–6333.
[14]
Barilero, I.; Gandia, D.; Armand, J.P.; Mathieu-Boué, A.; Ré, M.; Gouyette, A.; Chabot, G.G. Simultaneous determination of the camptothecin analogue CPT-11 and its active metabolite SN-38 by high-performance liquid chromatography: application to plasma pharmacokinetic studies in cancer patients. J. Chromatogr. B 1992, 575, 275–280, doi:10.1016/0378-4347(92)80156-K.
[15]
Boyd, G.; Smyth, J.F.; Jodrell, D.I.; Cummings, J. High-performance liquid chromatographic technique for the simultaneous determination of lactone and hydroxy acid forms of camptothecin and SN-38 in tissue culture media and cancer cells. Anal. Biochem. 2001, 297, 15–24, doi:10.1006/abio.2001.5317.
[16]
D'Esposito, F.; Tattam, B.N.; Ramzan, I.; Murray, M. A liquid chromatography/electrospray ionization mass spectrometry (LC-MS/MS) assay for the determination of irinotecan (CPT-11) and its two major metabolites in human liver microsomal incubations and human plasma samples. J. Chromatogr. B 2008, 875, 522–530, doi:10.1016/j.jchromb.2008.10.011.
[17]
Andersson, L.I. Molecular imprinting for drug bioanalysis: A review on the application of imprinted polymers to solid-phase extraction and binding assay. J. Chromatogr. B 2000, 739, 163–173, doi:10.1016/S0378-4347(99)00432-6.
[18]
Ge, Y.; Turner, A.P.F. Molecularly imprinted sorbent assays: Recent developments and applications. Chem. Eur. J. 2009, 15, 8100–8107, doi:10.1002/chem.200802401.
[19]
Pichon, V. Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A 2007, 1152, 41–53.
[20]
Vo Duy, S.; Lefebvre-Tournier, I.; Pichon, V.; Hugon-Chapuis, F.; Puy, J.-Y.; Périgaud, C. Molecularly imprinted polymer for analysis of zidovudine and stavudine in human serum by liquid chromatography-mass spectrometry. J. Chromatogr. B 2009, 877, 1101–1108, doi:10.1016/j.jchromb.2009.02.068.
[21]
Bansal, T.; Awasthi, A.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Development and validation of reversed phase liquid chromatographic method utilizing ultraviolet detection for quantification of irinotecan (CPT-11) and its active metabolite, SN-38, in rat plasma and bile samples: Application to pharmacokinetic studies. Talanta 2008, 76, 1015–1021, doi:10.1016/j.talanta.2008.04.058.