全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori

DOI: 10.3390/ijms13089923

Keywords: silver nanoparticles, Solanum xanthocarpum, anti-Helicobacter pylori activities, urease inhibitory activities, TEM, agar dilution method

Full-Text   Cite this paper   Add to My Lib

Abstract:

A green synthesis route for the production of silver nanoparticles using methanol extract from Solanum xanthocarpum berry (SXE) is reported in the present investigation. Silver nanoparticles (AgNps), having a surface plasmon resonance (SPR) band centered at 406 nm, were synthesized by reacting SXE (as capping as well as reducing agent) with AgNO 3 during a 25 min process at 45 °C. The synthesized AgNps were characterized using UV–Visible spectrophotometry, powdered X-ray diffraction, and transmission electron microscopy (TEM). The results showed that the time of reaction, temperature and volume ratio of SXE to AgNO 3 could accelerate the reduction rate of Ag + and affect the AgNps size and shape. The nanoparticles were found to be about 10 nm in size, mono-dispersed in nature, and spherical in shape. In vitro anti-Helicobacter pylori activity of synthesized AgNps was tested against 34 clinical isolates and two reference strains of Helicobacter pylori by the agar dilution method and compared with AgNO 3 and four standard drugs, namely amoxicillin (AMX), clarithromycin (CLA), metronidazole (MNZ) and tetracycline (TET), being used in anti- H. pylori therapy. Typical AgNps sample (S1) effectively inhibited the growth of H. pylori, indicating a stronger anti- H. pylori activity than that of AgNO 3 or MNZ, being almost equally potent to TET and less potent than AMX and CLA. AgNps under study were found to be equally efficient against the antibiotic-resistant and antibiotic-susceptible strains of H. pylori. Besides, in the H. pylori urease inhibitory assay, S1 also exhibited a significant inhibition. Lineweaver-Burk plots revealed that the mechanism of inhibition was noncompetitive.

References

[1]  Dastjerdi, R.; Montazer, M.; Shahsavan, S. Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids Surf. A Physicochem. Eng. Aspects 2010, 366, 197–202.
[2]  Setua, P.; Chakraborty, A.; Seth, D.; Bhatta, M.U.; Satyam, P.V.; Sarkar, N. Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. J. Phys. Chem. C 2007, 111, 3901–3907.
[3]  Yugang, S.; Mayers, B.; Xia, Y. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett 2003, 3, 955–960.
[4]  Du, W.L.; Niu, S.S.; Xu, Y.L.; Xu, Z.R.; Fan, C.L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr. Polym 2009, 75, 385–389.
[5]  Savage, N.; Diallo, M.S. Determination of ascorbic acid by modified method based on photoluminescence of silver nanoparticles. J. Nanopart. Res 2005, 7, 331–342.
[6]  Sinha, S.; Pan, I.; Chanda, P.; Sen, S.K. Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci 2009, 19, 1130.
[7]  Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007, 18, 106.
[8]  Hyning, V.; Klemperer, D.L. Silver nanoparticle formation: Predictions and verification of the aggregate growth model. Langmuir 2001, 17, 3128–3135.
[9]  Pastoriza-Santos, I.; Liz-Marzan, L.M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894.
[10]  Code of Federal Regulations via GPO Access. Federal Register, 1997, 62, pp. 67257–67548. Available online: http://www.gpo.gov/fdsys/pkg/FR-1997-12-24/pdf/FR-1997-12-24.pdf , accessed on 28 April 2012.
[11]  Raveendran, P.; Fu, J.; Wallen, S.L. Role of biopolymers in green nanotechnology. J. Am. Chem. Soc 2003, 125, 13940–13941.
[12]  Li, P.; Wang, Y.; Peng, Z.; She, F.; Kong, L. Effects of starch nanocrystal on structure and properties of waterborne polyurethane-based composites. Carbohydr. Polym 2011, 85, 698–703.
[13]  El-Rafie, M.H.; El-Naggar, M.E.; Ramadan, M.A.; Al-Deyab, S.S.; Hebeish, A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr. Polym 2011, 86, 630–635.
[14]  Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Par-Alikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett 2007, 61, 1413–1418.
[15]  Shahverdi, R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.A. Biosynthesis and application of silver and gold nanoparticles. Process Biochem 2007, 42, 919–923.
[16]  Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balsubra-Manya, R.H. Synthesis of ecofriendly silver nanoparticle from plant latex used as an important taxonomic tool for phylogenetic interrelationship. Colloids Surf. B 2006, 53, 55–59.
[17]  Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sankar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol 2006, 69, 485–492.
[18]  Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull 2008, 43, 1164–117.
[19]  Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.; Parsons, J.G.; Troiani, H.E. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano. Lett 2002, 2, 397–401.
[20]  Prathna, T.C.; Chandrasekaran, N.A.; Raichur, M.; Mukherjee, A. Kinetic evolution study of silver nanoparticles in bio-based green synthesis process. Colloids Surf. A Physicochem. Eng. Aspects 2011, 377, 212–216.
[21]  Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nano particles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys 2011, 129, 558–563.
[22]  Liu, Y.; Zhang, Y.A.; Zhang, M. Green hydrothermal synthesis and characterization of CdO2 nanoparticles. Mater. Lett 2010, 64, 1779–1781.
[23]  Ali, M.D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B 2011, 85, 360–365.
[24]  Vidhu, V.K.; Aromal, S.A.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A 2011, 83, 392–397.
[25]  Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, I.; Ma, Y.; Li, Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Mater. Lett 2011, 65, 2989–2991.
[26]  Dubey, S.P.; Lahtinen, M.; Sillanp??, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010, 45, 1065–1071.
[27]  Kumar, V.G.; Gokavarapu, S.D.; Rajeswari, A.; Dhas, T.S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I.A. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B 2011, 87, 159–163.
[28]  Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A 2009, 74, 735–739.
[29]  Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B 2009, 73, 332–338.
[30]  Paul, A.T.; Vir, S.; Bhuttani, K.K. Liquid chromatography-mass spectrometry based quantification of steroidal glycoalkaloids from Solanum xanthocarpum and effect of different extraction methods on their content. J. Chromatogr. A 2008, 1208, 146.
[31]  Siddique, S.; Faize, S.; Siddique, B.S. Studies in the chemical composition of fresh berries of Solaum xanthocarpum schard. J. Chem. Soc. Pak 1983, 5, 102.
[32]  Hussain, T.; Gupta, R.K.; Sweety, K.; Khan, M.S.; Sarfaraj Hussain, M.D.; Ari, M.D.; Hussain, A.; Faiyazuddin, M.D.; Rao, C.V. Evaluation of antihepatotoxic potential of Solanum xanthocarpum fruit extract against antitubercular drugs induced hepatopathy in experimental Rodents. Asian Pac. J. Trop. Biomed 2012, 5, 686–691.
[33]  Kumar, N.; Prakash, D.; Kumar, P. Wound healing activity of Solanum xanthocarpum. Indian J. Nat. Prod. Res 2010, 1, 475.
[34]  Singh, O.M.; Singh, T.P. Phytochemistry of Solanum xanthocarpum: An amazing traditional healer. J. Sci. Ind. Res 2010, 69, 734.
[35]  Dunn, B.E.; Cohen, H.; Blaser, M.J. Helicobacter pylori. Clin. Microbiol. Rev 1997, 10, 720–741.
[36]  Mégraud, F.; Lehn, N.; Lind, T.; Bayerdorffer, E.; O’morain, C.; Spiller, R.; Unge, P.; van Zanten, S.V.; Wrangstadh, M.; Burman, C.F. Antimicrobial susceptibility testing of Helicobacter pylori in a large multicenter trial: The MACH 2 study. Antimicrob. Agents Chemother 1999, 43, 2747–2752.
[37]  Amin, M.; Iqbal, M.S.; Hughes, R.W.; Khan, S.A.; Reynolds, P.A.; Enne, V.I.; Rahman, S.; Mirza, A.S. Mechanochemical synthesis and in vitro anti-Helicobacter pylori and uresase inhibitory activities of novel zinc(II)-famotidine complex. J. Enzyme Inhib. Med. Chem 2010, 25, 390.
[38]  Bruggraber, S.F.; French, G.; Hompson, T.R.P.; Powell, J.J. Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori. Helicobacter 2004, 9, 428.
[39]  Zaborska, W.; Krajewska, B.; Olech, Z. Heavy metal ions inhibition of jack bean urease: Potential for rapid contaminant probing. J. Enzyme Inhib. Med. Chem 2004, 19, 96.
[40]  Zaborska, W.; Krajewska, B.; Leszko, M.; Olech, Z. Inhibition of urease by Ni2+ ions. Analysis of reaction progress curves. J. Mol. Catal. B Enzym 2001, 13, 108.
[41]  Stensberg, M.C.; Wei, Q.; McLamore, E.S.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond.) 2011, 6, 879–898.
[42]  Dhawan, A.; Sharma, V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem 2010, 398, 589–605.
[43]  Asharani, P.V.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102.
[44]  Duran, N.; Marcato, P.D.; de Conti, R.; Alves, O.L.; Costa, F.T.M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Brazil. Chem. Soc 2010, 21, 949–959.
[45]  Lubick, N. Nanosilver toxicity: Ions, nanoparticles—Or both? Environ. Sci. Technol 2008, 42, 8617.
[46]  Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health. Perspect 2010, 118, 407–413.
[47]  Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Localized surface plasmon resonance effects by naturally occurring Chinese yam particles. J. Chem. Phys 2002, 116, 6755.
[48]  Daizy, P. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E 2010, 42, 1417–1424.
[49]  Daiz, P. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A 2009, 73, 650–653.
[50]  Brause, R.; Moeltgen, H.; Kleinermanns, K. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B 2002, 75, 711–716.
[51]  Arfan, M.; Ali, M.; Ahmad, H.; Anis, I.; Khan, A.; Choudhary, M.I.; Shah, M.R. Urease inhibitors from Hypericum oblongifolium WALL. J. Enzyme Inhibit. Med. Chem 2010, 25, 296–299.
[52]  Kreibig, U.; Vollmer, M. Silver nanowires as surface plasmon resonators. Mat. Sci 1995, 25, 531.
[53]  Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 800.
[54]  Sosa, I.O.; Noguez, C.; Barrera, R.G. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.
[55]  Paul, A.T.; Vir, S.; Bhuttani, K.K. Apoptosis inducing activity of steroidal constituents from Solaum xanthocarpum and Asparagus racemosus. J. Chromatogr. A 2008, 1208, 146.
[56]  Chen, S.; Carroll, D.L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2002, 2, 1003–1007.
[57]  Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.
[58]  Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. The chemistry and properties of nanocrystals of different shapes. Chem. Rev 2005, 105, 1025–1102.
[59]  Fang, M.; Chen, J.H.; Xu, X.L.; Yang, P.H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 2006, 27, 513–517.
[60]  Yuan, P.; He, H.P. Advances of Ag-type inorganic antibacterial agents’ research. Ind. Miner. Process 2002, 31, 5–9.
[61]  Millar, M.R.; Pike, J. Bactericidal activity of antimicrobial agents against slowly growing Helicobacter pylori. Antimicrob. Agents. Chemother 1992, 36, 185–187.
[62]  Lu, C.H.; Ni, Y.R.; Xu, Z.Z.; Zhang, Q.T. SSLP-based SSR fingerprinting and indica/japonica classification of yongyou series hybrid rice. J. Nanjing Univ. Technol 2003, 25, 107–110.
[63]  Ki, H.Y.; Kim, J.H.; Kwon, S.C.; Jeong, S.H. A study on multifunctional wool textiles treated with nanosized silver. J. Mater. Sci 2007, 42, 8020–8024.
[64]  Shrivastava, T.; Bera, A.; Roy, G.; Singh, P.; Ramachandrarao, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 223–225.
[65]  Hecht, D.W.; Citron, D.M.; Jenkins, S.G.; Onderdonk, A.; Roe-Carpenter, D.; Rosenblatt, J.E.; Wexler, H.M. Methods for Susceptibility Testing of Anaerobic Bacteria; Approved Standards 7th Edition; Clinical Laboratory Standard Institute (CLSI): Wayne, PA, USA, 2007. Available online: http://www.clsi.org/source/orders/free/m11a7.pdf , accessed on 10 February 2012.
[66]  Wu, H.; Shi, D.; Wang, H.T.; Liu, J.X. Resistance of Helicobacter pylori to metronidazole, tetracycline and amoxycillin. J. Antimicrob. Chemother 2000, 46, 121–123.
[67]  Mao, W.J.; Lv, P.C.; Shi, L.; Li, H.Q.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem 2009, 17, 7531.
[68]  Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem 1967, 39, 971–974.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133