The present study investigated the capacity of formulated Berberis vulgaris extract/β-cyclodextrin to protect liver against CCl 4-induced hepatotoxicity in mice. Formulated and non-formulated extracts were given orally (50 mg/kg/day) to mice for 7 days and were then intra-peritoneally injected with 1.0 mL/kg CCl 4 on the 8th day. After 24 h of CCl 4 administration, an increase in the levels of apartate-amino-transferase (AST), alanine-amino-transferase (ALT) and malondialdehyde (MDA) was found and a significant decrease in superoxide-dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione-peroxidase (GPx) levels could be detected. This was accompanied by extended centrilobular necrosis, steatosis, fibrosis and an altered ultrastructure of hepatocytes. Pre-treatment with formulated or non-formulated extract suppressed the increase in ALT, AST and MDA levels and restored the level of antioxidant enzymes at normal values. Histopathological and electron-microscopic examination showed milder liver damage in both pre-treated groups and the protective effect was more pronounced after the formulated extract was administered. Internucleosomal DNA fragmentation induced by CCl 4 was reduced in the group which received non-formulated extract and absent in the group which received formulated extract. Taken together, our results suggest that Berberis vulgaris/β-cyclodextrin treatment prevents hepatic injury induced by CCl 4 and can be considered for further nutraceutical studies.
References
[1]
Jones, A.L. Anatomy of the Normal Liver. In Hepatology: A Textbook of Liver Disease, 3rd ed; Zakin, D., Boyer, T.D., Eds.; WB Saunders: Philadelphia, PA, USA, 1996; pp. 3–32.
[2]
Zimmerman, H.J. Hepatotoxicity: The Adverse Effects of Drugs and other Chemicals on the Liver; Appleton-Century Crofts Publisher: New York, NY, USA, 1978.
[3]
Kaminski, M.; Wiaderkiewicz, R. The role of the liver in xenobiotic biotransformation. Part I. The role of the liver and its cells and their interactions. Probl. Forensic Sci 2007, 72, 357–378.
[4]
Weber, L.W.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol 2003, 33, 105–136.
[5]
Merrick, B.A. Toxicoproteomics in liver injury and inflammation. Ann. N. Y. Acad. Sci 2006, 1076, 707–717.
[6]
Manibusan, M.K.; Odin, M.; Eastmond, D.A. Postulated carbon tetrachloride mode of action: A review. J. Environ. Sci. Health C 2007, 25, 185–209.
[7]
Luper, S. A review of plants used in the treatment of liver disease: Part 1. Altern. Med. Rev 1998, 3, 410–421.
[8]
Luper, S. A review of plants used in the treatment of liver disease: Part 2. Altern. Med. Rev 1999, 4, 178–188.
[9]
Murriel, P.; Rivera-Espinoza, Y. Beneficial drugs for liver diseases. J. Appl. Toxicol 2008, 28, 93–103.
[10]
Ivanovska, N.; Philipov, S. Study on the anti-inflamatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int. J. Immunopharmacol 1996, 18, 553–561.
[11]
Saied, S.; Begum, S. Phytochemical studies of Berberis vulgaris. Chem. Nat. Compd 2004, 40, 137–140.
[12]
Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutical effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res 2008, 22, 999–1012.
[13]
Freile, M.L.; Giannini, F.; Pucci, G. Antimicrobial activity of aqueolus extracts and of berberine isolates from Berberis heterophylla. Fitoterapia 2003, 74, 702–705.
[14]
Mahady, G.B.; Pendland, S.L.; Stoia, A.; Chaadwick, L.R. In vitro susceptibility of Helicobacter pylori to isoquinoline alkaloids from Sanguinaria canadensis and Hydrastis canadensis. Phytother. Res 2003, 17, 217–221.
[15]
Iizuka, N.; Miyamoto, K.; Okita, K.; Tangoku, A.; Hayashi, H.; Yosino, S. Inhibitory effect of Coptidis rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett 2000, 148, 19–25.
[16]
Thirupurasundari, C.J.; Padmini, R.; Devaraj, S.N. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem. Biol. Interact 2009, 177, 190–195.
[17]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem 2010, 111, 1426–1436.
[18]
Kuo, C.L.; Chi, C.W.; Liu, T.Y. The anti-inflamatory potential of berberine in vitro and in vivo. Cancer Lett 2004, 203, 127–137.
[19]
Kupeli, E.; Kosar, M.; Yesilada, E.; Husnu, K.; Baser, C. A comparative study on the anti-inflamatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the root of Turkish Berberis species. Life Sci 2002, 72, 645–657.
[20]
Singh, A.; Duggal, S.; Kaur, N.; Singh, J. Berberine: Alkaloid with wide spectrum of pharmacological activities. J. Nat. Prod 2010, 3, 64–75.
[21]
Hobara, N.; Watanabe, A. Berberine-Induced bile bilirubin secretion in the rat. Curr. Ther. Res. Clin. Exp 1984, 35, 663–667.
[22]
Rabbani, G.H.; Butler, T.; Knight, J.; Sanyal, S.C.; Alam, K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholera. J. Infect. Dis 1978, 155, 979–984.
[23]
Zhou, H.; Mineshita, S. The effect of berberine chloride on experimental cholitis in rats in vivo and in vitro. J. Pharmachol. Exp. Ther 2000, 294, 822–829.
[24]
Fatehi, M.; Saleh, T.M.; Fatehi-Hassanabad, Z.; Farrokhfal, K.; Jafarzadeh, M.; Davodi, S. A pharmacological study on Berberis vulgaris fruit extract. J. Ethnopharmacol 2005, 102, 46–52.
[25]
Wong, K.K. Mechanism of the aortic relaxation induced by low concentrations of berberine. Planta Med 1998, 64, 756–757.
[26]
Zeng, X.H.; Zeng, X.J.; Li, Y.Y. Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyophathy. Am. J. Cardiol 2003, 92, 173–176.
[27]
Lee, B.; Yang, C.H.; Hahm, D.H.; Choe, E.S.; Lee, H.J.; Pyun, K.H.; Shim, I. Inhibitory Effects of Coptidis rhizoma and Berberine on Cocaine-induced Sensitization. Evid. Complement. Altern. Med 2009, 6, 85–90.
[28]
Feng, Y.; Siu, K.Y.; Ye, X.; Wang, N.; Yuen, M.F.; Leung, C.H.; Tong, Y.; Kobayashi, S. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats. Chin. Med 2010, 5, 1–6.
[29]
Janbaz, K.H.; Gilan, A.H. Studies on preventive and curative effects of berberine on chemical-induced hepatotoxicity in rodents. Fitoterapia 2000, 71, 25–33.
[30]
Hwang, J.M.; Wang, C.J.; Chou, F.P. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch. Toxicol 2002, 76, 664–670.
[31]
Fallah, H.; Zarrei, M.; Ziai, M.; Mehrazma, M.; Alavian, S.M.; Kianbakht, S.; Mehdizadeh, M. The effects of Taraxacum officinale L. and Berberis vulgaris L. root extracts on carbon tetrachloride induced liver toxicity in rats. J. Med. Plants 2010, 9, 45–52.
Chaung, S.S.; Lin, C.C.; Lin, J.; Yu, K.H.; Hsu, Y.F.; Yen, M.H. The hepatoprotective effects of Limonium sinense against carbon tetrachloride and beta-D-galactosamine intoxication in rats. Phytother. Res 2003, 17, 784–791.
[34]
Clawson, G.A. Mechanism of carbon tetrachloride hepatotoxicity. Pathol. Immunopathol. Res 1989, 8, 104–112.
[35]
Bhadauria, M. Propolis prevents hepatorenal injury induced by chronic exposure to carbon tetrachloride. Evid. Complement. Altern. Med 2012, doi:10.1155/2012/235358.
[36]
Shaker, E. Sylimarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol 2010, 48, 803–806.
Beddowes, E.J.; Faux, S.P.; Chipman, J.K. Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology 2003, 187, 101–115.
[39]
Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol 2010, 30, 620–650.
[40]
Motalleb, G.; Hanachi, P.; Kua, S.H.; Fauziah, O.; Asmah, R. Evaluation of phenolic content and total antioxidant activity in Berberis vulgaris fruit extract. J. Biol. Sci 2005, 5, 648–653.
[41]
Parichehr, H. Using HPLC to determination the composition and antioxidant activity of Berberis vulgaris. Eur. J. Sci. Res 2009, 29, 47–54.
[42]
Zovko, M.K.; Kremer, D.; Karlovi?, K.; Kosalec, I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol 2010, 48, 2176–2180.
[43]
Ozturk, F.; Gul, G.; Ates, B.; Ozturk, I.C.; Cetin, A.; Vardi, N.; Otlu, A.; Yilmaz, I. Protective effect of apricot (Prunus armeniaca L.) on hepatic steatosis and damage induced by carbon tetrachloride in Wistar rats. Br. J. Nutr 2009, 102, 1767–1775.
[44]
Junnila, M.; Rahko, T.; Sukura, A. Reduction of carbon tetrachloride-induced hepatotoxic effects by oral administration of betaine in male Han-Wistar rats: A morphometric histological study. Vet. Pathol 2000, 37, 231–238.
Tasci, I.; Mas, N.; Mas, M.R.; Tuncer, M.; Comert, B. Ultrastructural changes in hepatocytes after taurine treatment in CCl4 induced liver injury. World Gastroenterol 2008, 14, 4897–4902.
[49]
Folkmann, J.K.; Risom, L.; Jacobsen, N.R.; Loft, H.W.S.; Moller, P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect 2009, 117, 703–708.
[50]
Moller, P.; Wallin, H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat. Res 1998, 410, 271–290.
[51]
Iseki, S.; Mori, T. Methyl green pyronin stain distinguishes prolifferating from differentiated nonproliferating cell nuclei after acid denaturation of DNA. J. Histochem 1986, 34, 683–687.
[52]
Sen, J.Y.; Huang, Q.Y.; Gao, H.Y.; Liu, Y.L.; Cheng, C.F. Modification and application of methyl green-pyronin stain after acid denaturation of DNA. Prog. Anat. Sci 1999, 5, 272–273.
[53]
Wang, H.M.; Zheng, N.G.; Wu, J.L.; Gong, C.C.; Wang, Y.L. Dual effects of 8-Br-cAMP on differentiation and apoptosis of human esophageal cancer. World J. Gastroenterol 2005, 7, 6538–6542.
[54]
Manna, P.; Bhattacharyya, S.; Das, J.; Ghosh, J.; Parames, C.; Sil, C. Phytomedicinal role of Pithecellobium dulce against CCl4-mediated hepatic oxidative impairments and necrotic cell death. Evid. Complement. Altern. Med 2011, doi:10.1093/ecam/neq065.
[55]
Sakr, S.A.; El-Abd, S.F.; Osman, M.; Kandil, A.M.; Helmy, M.S. Ameliorative effect of aqueous leave extract of Ocimum basilicum on CCl4-induced hepatotoxicity and apoptosis in albino rats. J. Am. Sci 2011, 7, 116–127.
[56]
Sengupta, M.; Sharma, G.D.; Chakraborty, B. Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice. BMC Complement. Altern. Med 2011, 11, 1–9.
[57]
Linn, T.T.; Wang, B.M.; Li, X.Y.; Pan, Y.W.; Liu, J.Q.; Shen, J.C.; Luo, G.M. An insight into the protection of rat liver against ischemia/reperfusion injury by 2-selenium-bridged beta-cyclodextrin. Hepatol. Res 2009, 39, 1125–1136.
[58]
Liu, Y.; Sakagami, H.; Hasimoto, K.; Kikuchi, H.; Amano, O.; Ishara, M.; Kanda, Y.; Kunii, S.; Kochi, M.; Zhang, W.; Yu, G. Tumor-specific cytotoxicity and type of cell death induced by beta-cyclodextrin benzaldehyde inclusion compound. Anticancer Res 2008, 28, 229–236.
[59]
Yadav, V.R.; Prasad, S.; Kannappan, R.; Ravindran, J.; Chatuvedi, M.M.; Vaahtera, L.; Parkkinen, J.; Aggarwal, B.B. Cyclodextrin-complexed cucurmin exhibits anti-inflamatory and antiproliferative activities superior to those of cucurmin through higher cellular uptake. Biochem. Pharmacol 2010, 80, 1021–1032.
[60]
Hadaruga, D.I.; Hadaruga, N.G.; Hermenean, A.; Rivis, A.; Paslaru, V.; Codina, G. Biomaterials: Thermal stability of the oleic acid/α and β cyclodextrin complexes. Rev. Chim. (Bucharest) 2008, 59, 994–998.
[61]
Aebi, H. Catalase in Methods of Enzymatic Analysis, 2nd ed; Bergmayer, H.U., Ed.; Academic Press: New York, NY, USA, 1974; pp. 673–677.
[62]
Beauchamp, C.O.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem 1971, 44, 276–287.
[63]
Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods, 3rd ed ed.; Grune & Stratton Inc: New York, NY, USA, 1974.
[64]
Del Rio, D.; Pellegrini, N.; Colombi, B.; Bianchi, M.; Serafini, M.; Torta, F.; Tegoni, F.; Musci, M.; Brighenti, F. Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions. Clin. Chem 2003, 49, 690–692.
[65]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem 1951, 193, 265–275.
[66]
Zhou, B.R.; Gumenscheimer, M.; Freudenberg, M.; Galanos, C. A sriking correaltion between lethal activity and apoptotic DNA fragmentation of liver in response of D-galactosamine-sintetized mice to a non-lethal amount of lipopolysaccharide. Acta Pharmacol. Sin 2003, 24, 193–198.