全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Protocatechuic Acid in Bacillus Thuringiensis ATCC33679

DOI: 10.3390/ijms13033765

Keywords: catechol, Bacillus, protocatechuic acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protocatechuic acid, or 3,4-dihydroxybenzoic acid, is produced by both soil and marine bacteria in the free form and as the iron binding component of the siderophore petrobactin. The soil bacterium, Bacillus thuringiensis kurstaki ATCC 33679, contains the asb operon, but does not produce petrobactin. Iron restriction resulted in diminished B. thuringiensis kurstaki ATCC 33679 growth and the production of catechol(s). The gene product responsible for protocatechuic acid ( asbF) and its receptor ( fatB) were expressed during stationary phase growth. Gene expression varied with growth temperature, with optimum levels occurring well below the Bacillus anthracis virulence temperature of 37 °C. Regulation of protocatechuic acid suggests a possible role for this compound during soil growth cycles.

References

[1]  Crosa, J.H.; Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev 2002, 6, 223–249.
[2]  Wilson, M.K.; Abergel, R.J.; Raymond, K.N.; Arceneaux, J.E.; Byers, B.R. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem. Biophys. Res. Commun 2006, 348, 320–325.
[3]  Wilson, M.K.; Abergel, R.J.; Arceneaux, J.E.; Raymond, K.N.; Byers, B.R. Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals 2010, 1, 129–134.
[4]  Lee, J.Y.; Passalacqua, K.D.; Hanna, P.C.; Sherman, D.H. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One 2011, 6, e20777.
[5]  Hotta, K.; Kim, C.Y.; Fox, D.T.; Koppisch, A.T. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology 2010, 156, 1918–1925.
[6]  Garner, B.L.; Arceneaux, J.E.L.; Byers, B.R. Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore. Curr. Microbiol 2004, 49, 89–94.
[7]  Parent, M.A.; Bellaire, B.H.; Murphy, E.; Roop, R.M.; Elzer, P.H.; Baldwin, C.L. Brucella abortus siderophore 2,3-dihydroxybenzoic acid (DHBA) facilitates intracellular survival of the bacteria. Microb. Pathog 2002, 32, 239–248.
[8]  Frederiksen, K.; Rosenquist, H.; J?rgensen, K.; Wilcks, A. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl. Environ. Microbiol 2006, 72, 3435–3440.
[9]  Read, T.D.; Peterson, S.N.; Tourasse, N.; Baillie, L.W.; Paulsen, I.T.; Nelson, K.E.; Tettelin, H.; Fouts, D.E.; Eisen, J.A.; Gill, S.R.; et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 2003, 423, 81–86.
[10]  Ozkocaman, V.; Ozcelik, T.; Ali, R.; Ozkalemkas, F.; Ozkan, A.; Ozakin, C.; Akalin, H.; Ursavas, A.; Coskun, F.; Ener, B.; et al. Bacillus spp. among hospitalized patients with haematological malignancies: clinical features, epidemics and outcomes. J. Hosp. Infect 2006, 64, 169–176.
[11]  Dohmae, S.; Okubo, T.; Higuchi, W.; Takano, T.; Isobe, H.; Baranovich, T.; Kobayashi, S.; Uchiyama, M.; Tanabe, Y.; Itoh, M.; et al. Bacillus cereus nosocomial infection from reused towels in Japan. J. Hosp. Infect 2008, 69, 361–367.
[12]  Mahfuzur, R.; Punja, Z.K. Influence of iron on cylindrocarpon root rot development on ginseng. Phytopathology 2006, 96, 1179–1187.
[13]  Ishimaru, Y.; Bashir, K.; Nakanishi, H.; Nishizawa, N.K. The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signal. Behav 2011, 6, 1624–1626.
[14]  Chao, C.Y.; Yin, M.C. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis 2009, 6, 201–206.
[15]  Liu, W.H.; Hsu, C.C.; Yin, M.C. In vitro anti-Helicobacter pylori activity of diallyl sulphides and protocatechuic acid. Phytother. Res 2008, 22, 53–57.
[16]  Palumbo, J.D.; O’Keeffe, T.L.; Mahoney, N.E. Inhibition of ochratoxin, a production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia 2007, 164, 241–248.
[17]  Park, R.Y.; Choi, M.H.; Sun, H.Y.; Shin, S.H. Production of catechol-siderophore and utilization of transferrin bound iron in Bacillus cereus. Biol. Pharm. Bull 2005, 28, 1132–1135.
[18]  Koehler, T.M. Bacillus anthracis genetics and virulence gene regulation. Curr. Top. Microbiol. Immunol 2002, 27, 143–164.
[19]  Brillard, J.; Jéhanno, I.; Dargaignaratz, C.; Barbosa, I.; Ginies, C.; Carlin, F.; Fedhila, S.; Nguyen-the, C.; Broussolle, V.; Sanchis, V. Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Appl. Environ. Microbiol 2010, 76, 2562–2573.
[20]  Guinebretière, M.H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus group. Environ. Microbiol 2008, 10, 851–865.
[21]  Arthurs, S.P.; Lacey, L.A.; de la Rosa, F. Evaluation of a granulovirus (PoGV) and Bacillus thuringiensis subsp. kurstaki for control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. J. Econ. Entomol 2008, 101, 1540–1546.
[22]  Bizzarri, M.F.; Bishop, A.H. The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb. Ecol 2008, 56, 133–139.
[23]  Payne, S.M. Detection, isolation, and characterization of siderophores. Methods Enzymol 1994, 235, 329–344.
[24]  Koppisch, A.T.; Dhungana, S.; Hill, K.K.; Boukhalfa, H.; Heine, H.S.; Colip, L.A.; Romero, R.B.; Shou, Y.; Ticknor, L.O.; Marrone, B.L.; et al. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. Biometals 2008, 21, 81–589.
[25]  Oves-Costales, D.; Kadi, N.; Fogg, M.J.; Song, L.; Wilson, K.S.; Challis, G.L. Petrobactin biosynthesis: AsbB catalyzes condensation of spermidine with N-8-citryl-spermidine and its N1-(3,4-dihydroxybenzoyl) derivative. Chem. Commun. (Camb) 2008, 4034–4036.
[26]  McIngvale, S.C.; Elhanafi, D.; Drake, M.A. Optimization of reverse transcriptase PCR to detect viable Shiga-toxin-producing Escherichia coli. Appl. Environ. Microbiol 2002, 68, 799–806.
[27]  Zawadzka, A.M.; Abergel, R.J.; Nichiporuk, R.; Andersen, U.N.; Raymond, K.N. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 2009, 48, 3645–3657.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133