全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Neuroprotective Strategies in Ischemic Retinal Lesions

DOI: 10.3390/ijms11020544

Keywords: BCCAO, ischemia, retinoprotection, urocortin 2, diazoxide, PACAP, PARP-inhibitor, rat retina

Full-Text   Cite this paper   Add to My Lib

Abstract:

Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K + channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.

References

[1]  Osborne, NN; Casson, RJ; Wood, JPM; Chidlow, G; Graham, M; Melena, J. Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res?2004, 23, 91–147.
[2]  Harris, A; Jonescu-Cuypers, CP; Kagemann, L; Krieglstein, GK. Atlas of Ocular Blood Flow–Vascular Anatomy, Pathophysiology, and Metabolism; Imprint of Butterworth Heinemann: Philadelphia, PA, USA, 2003.
[3]  Feigl, B. Age-related maculopathy-linking aetiology and pathophysiologycal changes to the ischaemia hypothesis. Prog. Retin. Eye Res?2009, 28, 63–86.
[4]  Kaur, C; Foulds, WS; Ling, EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog. Retin. Eye Res?2008, 27, 622–647.
[5]  Pournaras, CJ; Rungger-Brandle, E; Riva, CE; Hardarson, SH; Stefansson, E. Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res?2008, 27, 284–330.
[6]  Chen, CS; Miller, NR. Ocular ischemic syndrome: review of clinical presentations, etiology, investigation, and management. Compr. Ophthalmol?2007, 8, 17–28.
[7]  Osborne, NN; Ugarte, M; Chao, M; Chidlow, G; Bae, JH; Wood, JP; Nash, MS. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv. Ophthalmol?1999, 1, 102–128.
[8]  Bek, T. Inner retinal ischemia: current understanding and needs for further investigations. Acta Ophthalmol?2009, 87, 362–367.
[9]  Roth, S. Endogenous neuroprotection in the retina. Brain Res. Bull?2004, 62, 461–466.
[10]  Fulton, AB; Akula, JD; Mocko, JA; Hansen, RM; Benador, IY; Beck, SC; Fahl, E; Seeliger, MW; Moskowitz, A; Harris, ME. Retinal degenerative and hypoxic ischemic disease. Doc. Ophthalmol?2009, 118, 55–61.
[11]  Kalesnykas, G; Tuulos, T; Uusitalo, H; Jolkkonen, J. Neurogenereration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience?2008, 55, 937–947.
[12]  Farkas, E; Luiten, PG; Bari, F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res. Rev?2007, 54, 162–180.
[13]  Slakter, JS; Spertus, AD; Weissman, SS; Henkind, P. An experimental model of carotid artery occlusive disease. Am. J. Ophtalmol?1984, 97, 168–172.
[14]  Spertus, AD; Slakter, JS; Weissman, SS; Henkind, P. Experimental carotid occlusion: funduscopic and fluorescein angiographic findings. Br. J. Ophtalmol?1984, 68, 47–57.
[15]  Block, F; Schwarz, M; Sontag, KH. Retinal ischemia induced by occlusion of both common carotid arteries in rats as demonstrated by electroretinography. Neurosci. Lett?1992, 144, 124–126.
[16]  Osborne, NN; Safa, R; Nash, MS. Photoreceptors are preferentially affected in the rat retina following permanent occlusion of the carotid arteries. Vision Res?1999, 39, 3995–4002.
[17]  Stevens, WD; Fortin, T; Pappas, BA. Retinal and optic nerve degeneration after chronic carotid ligation. Stroke?2002, 33, 1107–1112.
[18]  Yamamoto, H; Schmidt-Kasner, R; Hamasaki, DI; Yamamoto, H; Parel, JM. Complex neurodegeneration in retina following moderate ischemia induced by bilateral common carotid artery occlusion in Wistar rats. Exp. Eye Res?2006, 82, 767–779.
[19]  Lavinsky, D; Arterni, NS; Achaval, M; Netto, CA. Chronic bilateral common carotid artery occlusion: a model for ocular ischemic syndrome in the rat. Graefe’s Arch. Clin. Exp. Ophthalmol?2006, 244, 199–204.
[20]  Mester, L; Szabo, A; Atlasz, T; Szabadfi, K; Reglodi, D; Kiss, P; Racz, B; Tamas, A; Gallyas, F; Sumegi, B; Hocsak, E; Gabriel, R; Kovacs, K. Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox. Res?2009, 18, 68–76.
[21]  Atlasz, T; Babai, N; Kiss, P; Reglodi, D; Tamas, A; Szabadfi, K; Toth, G; Hegyi, O; Lubics, A; Gabriel, R. Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats. Gen. Comp. Endocrinol?2007, 153, 108–114.
[22]  Vidal-Sanz, M; Lafuente, M; Sobrado-Calvo, P; Selles-Navarro, I; Rodriguez, E; Mayor-Torroglosa, S; Villegas-Perez, MP. Death and neuroprotection of retinal ganglion cells after different types of injury. Neurotox. Res?2000, 2, 215–227.
[23]  Dilsiz, N; Sahaboglu, A; Yildiz, MZ; Reichenbach, A. Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefe’s Arch. Clin. Exp. Ophthalmol?2006, 244, 627–633.
[24]  Li, SY; Fu, ZJ; Ma, H; Jang, WC; So, KF; Wong, D; Lo, AC. Effect of lutein on retinal neurons and oxidative stress in a model of acute retinal ischemia/reperfusion. Invest. Ophthalmol. Vis. Sci?2009, 50, 836–843.
[25]  Maher, P; Hanneken, A. Flavonoids protect retinal ganglion cells from ischemia in vitro. Exp. Eye Res?2008, 86, 366–374.
[26]  Roth, S; Li, B; Rosenbaum, PS; Gupta, H; Goldstein, IM; Maxwell, KM; Gidday, JM. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest. Ophthalmol. Vis. Sci?1998, 39, 777–785.
[27]  Obolensky, A; Berenshtein, E; Konijn, AM; Banin, E; Chevion, M. Ischemic preconditioning of the rat retina: protective role of ferritin. Free Radic. Biol. Med?2008, 44, 1286–1294.
[28]  Sakamoto, K; Yonoki, Y; Kuwagata, M; Saito, M; Nakahara, T; Ishii, K. Histological protection against ischemia-reperfusion injury by early ischemic preconditioning in rat retina. Brain Res?2004, 1015, 154–160.
[29]  Chollangi, S; Wang, J; Martin, A; Quinn, J; Ash, JD. Preconditioning-induced protection from oxidative injury is mediated by leukemia inhibitory factor receptor (LIFR) and its ligands in the retina. Neurobiol. Dis?2009, 34, 535–544.
[30]  Li, Y; Roth, S; Laser, M; Ma, JX; Crosson, CE. Retinal preconditioning and the induction of heat-shock protein 27. Invest. Ophthalmol. Vis. Sci?2003, 44, 1299–1304.
[31]  Fernandez, DC; Chianelli, MS; Rosenstein, RE. Involvement of glutamate in retinal protection against ischemia/reperfusion damage induced by post-conditioning. J. Neurochem?2009, 111, 488–498.
[32]  Macaluso, C; Frishman, LJ; Frueh, B; Kaelin-Lang, A; Onoe, S; Niemeyer, G. Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina. Doc. Ophthalmol?2003, 106, 51–59.
[33]  Tomita, H; Ishiguro, S; Abe, T; Tamai, M. Administration of nerve growth factor, brain-derived neurotrophic factor and insulin-like growth factor-II protects phosphate-activated glutaminase in the ischemic and reperfused rat retinas. Tohoku J. Exp. Med?1999, 187, 227–236.
[34]  Nishijima, K; Ng, Y-S; Zhong, L; Bradley, J; Schubert, W; Jo, N; Akita, J; Samuelsson, SJ; Robinson, GS; Adamis, AP; Shima, DT. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol?2007, 171, 53–67.
[35]  Sivilia, S; Giuliani, A; Fernández, M; Turba, ME; Forni, M; Massella, A; de Sordi, N; Giardino, L; Calzà, L. Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neurosci?2009, 10, 52.
[36]  Junk, AK; Mammis, A; Savitz, SI; Singh, M; Roth, S; Malhotra, S; Rosenbaum, PS; Cerami, A; Brines, M; Rosenbaum, DM. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA?2002, 99, 10659–10664.
[37]  Dreixler, JC; Hagevik, S; Hemmert, JW; Shaikh, AR; Rosenbaum, DM; Roth, S. Involvement of erythropoietin in retinal ischemic preconditioning. Anesthesiology?2009, 110, 774–780.
[38]  Jehle, T; Meschede, W; Dersch, R; Feltgen, N; Bach, M; Lagreze, WA. Erythropoietin protects retinal ganglion cells and visual function after ocular ischemia and optic nerve compression. Ophthalmologe?2009. in press.
[39]  Schmeer, C; Gamez, A; Tausch, S; Witte, OW; Isenmann, S. Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Invest. Ophthalmol. Vis. Sci?2008, 49, 4971–4981.
[40]  Russo, R; Cavaliere, F; Watanabe, C; Nucci, C; Bagetta, G; Corasaniti, MT; Sakurada, S; Morrone, LA. 17Beta-estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat. Prog. Brain Res?2008, 173, 583–590.
[41]  El-Remessy, AB; Khalil, IE; Matragoon, S; Abou-Mohamed, G; Tsai, NJ; Roon, P; Caldwell, RB; Caldwell, RW; Green, K; Liou, GI. Neuroprotective effect of (?)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am. J. Pathol?2003, 163, 1997–2008.
[42]  Riazi-Esfahani, M; Kiumehr, S; Asadi-Amoli, F; Lashay, AR; Dehpour, AR. Morphine pretreatment provides histologic protection against ischemia-reperfusion injury in rabbit retina. Retina?2008, 28, 511–517.
[43]  Riazi-Esfahani, M; Kiumehr, S; Asadi-Amoli, F; Dehpour, AR. Effects of intravitreal morphine administered at different time points after reperfusion in a rabbit model of ischemic retinopathy. Retina?2009, 29, 262–268.
[44]  Kocer, I; Kulacoglu, D; Altuntas, I; Gundogdu, C; Gullulu, G. Protection of the retina from ischemia-reperfusion injury by L-carnitine in guinea pigs. Eur. J. Ophthalmol?2003, 13, 80–85.
[45]  Lombardi, G; Moroni, F. Glutamate receptor antagonists protect against ischemia-induced retinal damage. Eur. J. Pharmacol?1994, 271, 489–495.
[46]  Wood, JP; Schmidt, KG; Melena, J; Chidlow, G; Allmeier, H; Osborne, NN. The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp. Eye Res?2003, 76, 505–516.
[47]  Donello, JE; Padillo, EU; Webster, ML; Wheeler, LA; Gil, DW. Alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J. Pharmacol. Exp. Ther?2001, 296, 216–223.
[48]  Ettaiche, M; Heurteaux, C; Blondeau, N; Borsotto, M; Tinel, N; Lazdunski, M. ATP-sensitive potassium channels [K(ATP)] in retina: a key role for delayed ischemic tolerance. Brain Res?2001, 890, 118–129.
[49]  Sakamoto, K; Kawakami, T; Shimada, M; Yamaguchi, A; Kuwagata, M; Saito, M; Nakahara, T; Ishii, K. Histological protection by cilnidipine, a dual L/N-type Ca(2+) channel blocker, against neurotoxicity induced by ischemia-reperfusion in rat retina. Exp. Eye Res?2009, 88, 974–982.
[50]  Traustason, S; Eysteinsson, T; Agnarsson, BA; Stefánsson, E. GABA agonists fail to protect the retina from ischemia-reperfusion injury. Exp. Eye Res?2009, 88, 361–366.
[51]  Holman, MC; Chidlow, G; Wood, JP; Casson, RJ. Hyperglycemia rescues retinal neurons from hypoperfusion-induced injury. Invest Ophthalmol Vis Sci?2009. in press.
[52]  Fekete, éM; Zorrilla, EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Front. Neuroendocrinol?2007, 28, 1–27.
[53]  Chen, A; Perrin, M; Brar, B; Li, C; Jamieson, P; Digruccio, M; Lewis, K; Vale, W. Mouse corticotropin-releasing factor receptor type 2alpha gene: isolation, distribution, pharmacological characterization and regulation by stress and glucocorticoids. Mol. Endocrinol?2005, 19, 441–458.
[54]  Latchman, DS. Molecules in focus urocortin. Biochem. Cell Biol?2002, 34, 907–910.
[55]  Pan, W; Kastin, AJ. Urocortin and the brain. Prog. Neurobiol?2008, 84, 148–156.
[56]  Skelton, KH; Owens, MJ; Nemeroff, CB. The neurobiology of urocortin. Regul. Pept?2000, 93, 85–92.
[57]  Tsatsanis, C; Androulidaki, A; Dermitzaki, E; Charalampopoulos, I; Spiess, J; Gravanis, A; Margioris, AN. Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2. FEBS Lett?2005, 579, 4259–4264.
[58]  Uchida, M; Suzuki, M; Shimizu, K. Effects of urocortin, corticotropin-releasing factor (CRF) receptor agonist, and astressin, CRF receptor antagonist, on the sleep-wake pattern: analysis by radiotelemetry in conscious rats. Biol. Pharm. Bull?2007, 10, 1895–1897.
[59]  Brar, BK; Jonassen, AK; Egorina, EM; Chen, A; Negro, A; Perrin, MH; Mj?s, OD; Latchman, DS; Lee, KF; Vale, W. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology?2004, 145, 24–35.
[60]  Liu, CN; Yang, C; Liu, XY; Li, S. In vivo protective effects of urocortin on ischemiareperfusion injury in rat heart via free radical mechanisms. Can. J. Physiol. Pharmacol?2005, 83, 459–465.
[61]  Rademaker, MT. Urocortin: cardiovascular actions and therapeutic implications. Lett. Drug Des. Discov?2004, 1, 168–172.
[62]  Tao, J; Li, S. Effects of UCN via ion mechanisms or CRF receptors? Biochem. Biophys. Res. Commun?2005, 336, 731–736.
[63]  Facci, L; Stevens, DA; Pangallo, M; Franceschini, D; Skaper, SD; Strijbos, PJLM. Corticotropin-releasing factor (CRF) and related peptides confer neuroprotection via type 1 CRF receptors. Neuropharmacol?2003, 45, 623–636.
[64]  Pedersen, WA; Wan, R; Zhang, P; Mattson, MP. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci?2002, 22, 404–412.
[65]  Dautzenberg, FM; Huber, G; Higelin, J; Py-Lang, G; Kilpatrick, GJ. Evidence for the abundant expression of arginine 185 containing human CRF2 receptors and the role of position 185 for receptor-ligand selectivity. Neuropharmacol?2000, 39, 1368–1376.
[66]  Zmijewski, MA; Sharma, RK; Slominski, AT. Expression of molecular equivalent of hypothalamic-pituitary-adrenal axis in adult retinal pigment epithelium. J. Endocrinol?2007, 193, 157–169.
[67]  Skofitsch, G; Jacobowitz, DM. Corticotropin releasing factor-like immunoreactive neurons in the rat retina. Brain Res. Bull?1984, 12, 539–542.
[68]  Williamson, DE; Eldred, WD. Synaptic organization of two types of amacrine cells with CRF-like immunoreactivity in the turtle retina. Vis. Neurosci?1991, 6, 257–269.
[69]  Williamson, DE; Eldred, WD. Amacrine and ganglion cells with corticotropinreleasing-factor-like immunoreactivity in the turtle retina. J. Comp. Neurol?1989, 280, 424–435.
[70]  Zhang, DR; Gallagher, M; Sladek, CD; Yeh, HH. Postnatal development of corticotrophin releasing factor-like immunoreactive amacrine cells in the rat retina. Brain Res. Dev. Brain Res?1990, 51, 185–194.
[71]  Zhang, DR; Yeh, HH. Corticotropin releasing factor-like immunoreactivity (CRFLI) in horizontal cells of the developing rat retina. Vis. Neurosci?1991, 6, 383–391.
[72]  Zhang, DR; Yeh, HH. Histogenesis of corticotropin releasing factor-like immunoreactive amacrine cells in the rat retina. Brain Res. Dev. Brain Res?1990, 53, 194–199.
[73]  Szabadfi, K; Atlasz, T; Reglodi, D; Kiss, P; Danyáadi, B; Fekete, éM; Zorrilla, EP; Tamas, A; Szabo, K; Gabriel, R. Urocortin 2 protects against retinal degeneration following bilateral common carotid artery occlusion in the rat. Neurosci. Lett?2009, 455, 42–45.
[74]  Busija, DW; Lacza, Z; Rajapakse, N; Shimizu, K; Kis, B; Bari, F; Domoki, F; Horiguchi, T. Targeting mitochondrial ATP-sensitive potassium channels - a novel approach to neuroprotection. Brain Res. Rev?2004, 46, 282–294.
[75]  Yamauchi, T; Kashii, S; Yasuyoshi, H; Zhang, S; Honda, Y; Akaike, A. Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection. Invest. Ophthalmol. Vis. Sci?2003, 44, 2750–2756.
[76]  Domoki, F; Perciaccante, JV; Veltkamp, R; Bari, F; Busija, DW. Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke?1999, 30, 2713–2718.
[77]  Liu, D; Lu, C; Wan, R; Auyeung, WW; Mattson, MP. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab?2002, 22, 431–443.
[78]  Minners, J; McLeod, CJ; Sack, MN. Mitochondrial plasticity in classical ischemic preconditioning-moving beyond the mitochondrial KATP channel. Cardiovasc. Res?2003, 59, 1–6.
[79]  Shake, JG; Peck, EA; Marban, E; Gott, VL; Johnston, MV; Troncoso, JC; Redmond, JM; Baumgartner, WA. Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection. Ann. Thorac. Surg?2001, 72, 1849–1854.
[80]  Nagy, K; Kis, B; Rajapakse, NC; Bari, F; Busija, DW. Diazoxide preconditioning protects against neuronal cell death by attenuation of oxidative stress upon glutamate stimulation. J. Neurosci. Res?2004, 76, 697–704.
[81]  Teshima, Y; Akao, M; Li, RA; Chong, TH; Baumgartner, WA; Johnston, MV; Marban, E. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke?2003, 34, 1796–1802.
[82]  Rajapakse, N; Kis, B; Horiguchi, T; Snipes, J; Busija, DW. Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. J. Neurosci. Res?2003, 73, 206–214.
[83]  Domoki, F; Bari, F; Nagy, K; Busija, DW; Siklós, L. Diazoxide prevents mitochondrial swelling and Ca2+ accumulation in CA1 pyramidal cells after cerebral ischemia in newborn pigs. Brain Res?2004, 1019, 97–104.
[84]  Kis, B; Rajapakse, NC; Snipes, JA; Nagy, K; Horiguchi, T; Busija, DW. Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J. Neurochem?2003, 87, 969–980.
[85]  Liu, Y; Sato, T; Seharaseyon, J; Szewczyk, A; O’Rourke, B; Marban, E. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann. NY Acad. Sci?1999, 874, 27–37.
[86]  Shimizu, K; Lacza, Z; Rajapakse, N; Horiguchi, T; Snipes, J; Busija, DW. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am. J. Physiol. Heart Circ. Physiol?2002, 283, 1005–1011.
[87]  Busija, DW; Katakam, P; Rajapakse, NC; Kis, B; Grover, G; Domoki, F; Bari, F. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res. Bull?2005, 66, 85–90.
[88]  Farkas, E; Annahazi, A; Institoris, A; Mihaly, A; Luiten, PG; Bari, F. Diazoxide and dimethyl sulphoxide alleviate experimental cerebral hypoperfusion-induced white matter injury in the rat brain. Neurosci. Lett?2005, 373, 195–199.
[89]  Farkas, E; Timmer, NM; Domoki, F; Mihaly, A; Luiten, PG; Bari, F. Post-ischemic administration of diazoxide attenuates long-term microglial activation in the rat brain after permanent carotid artery occlusion. Neurosci. Lett?2005, 387, 168–172.
[90]  Lenzser, G; Kis, B; Bari, F; Busija, DW. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res?2005, 1051, 72–80.
[91]  Farkas, E; Institoris, A; Domoki, F; Mihaly, A; Luiten, PG; Bari, F. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res?2004, 1008, 252–260.
[92]  Farkas, E; Institoris, A; Domoki, F; Mihaly, A; Bari, F. The effect of pre- and posttreatment with diazoxide on the early phase of chronic cerebral hypoperfusion in the rat. Brain Res?2006, 1087, 168–174.
[93]  Sheu, SJ; Wu, SN. Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina. Invest. Ophthalmol. Vis. Sci?2003, 44, 1237–1244.
[94]  Pielen, A; Kirsch, M; Hofmann, HD; Feuerstein, TJ; Lagreze, WA. Retinal ganglion cell survival is enhanced by gabapentin-lactam in vitro: evidence for involvement of mitochondrial KATP channels. Graefe’s Arch. Clin. Exp. Ophthalmol?2004, 242, 240–244.
[95]  Hankins, MW; Ikeda, H. Consequences of transient retinal hypoxia on rod input to horizontal cells in the rat retina. Vision Res?1993, 33, 429–436.
[96]  Roth, S; Dreixler, JC; Shaikh, AR; Lee, KH; Bindokas, V. Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest. Ophthalmol. Vis. Sci?2006, 47, 2114–2124.
[97]  Jehle, T; Lagreze, WA; Blauth, E; Knorle, R; Schnierle, P; Lucking, CH; Feuerstein, TJ. Gabapentin-lactam (8-aza-spiro[5,4]decan-9-on; GBP-L) inhibits oxygen glucose deprivation-induced [3H]glutamate release and is a neuroprotective agent in a model of acute retinal ischemia. Naunyn Schmiedebergs Arch. Pharmacol?2000, 362, 74–81.
[98]  Atlasz, T; Babai, N; Reglodi, D; Kiss, P; Tamas, A; Bari, F; Domoki, F; Gabriel, R. Diazoxide is protective in the rat retina against ischemic injury induced by bilateral carotid occlusion and glutamate-induced degeneration. Neurotox. Res?2007, 12, 105–111.
[99]  Unoki, K; La Vail, MM. Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest. Ophtalmol. Vis. Sci?1994, 35, 907–915.
[100]  Ogata, N; Wang, L; Jo, N; Tombran-Tink, J; Takahashi, K; Mrazek, D; Matsumura, M. Pigment epithelium derived factor as a neuroprotective agent against ischemic retinal injury. Curr. Eye Res?2001, 22, 245–252.
[101]  Shibuki, H; Katai, N; Kuroiwa, S; Kurokawa, T; Arai, J; Matsumoto, K; Nakamura, T; Yoshimura, N. Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci?2002, 43, 528–536.
[102]  Vaudry, D; Falluel-Morel, A; Bourgault, S; Basille, M; Burel, D; Wurtz, O; Fournier, A; Chow, BK; Hashimoto, H; Galas, L; Vaudry, H. Pituitary adenylate cyclase activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev?2009, 61, 283–357.
[103]  Ohtaki, H; Nakamachi, T; Dohi, K; Shioda, S. Role of PACAP in ischemic neural death. J. Mol. Neurosci?2008, 36, 16–25.
[104]  Somogyvari-Vigh, A; Reglodi, D. Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide-review. Curr. Pharm. Des?2004, 10, 2861–2889.
[105]  Seki, T; Izumi, S; Shioda, S; Zhou, CJ; Arimura, A; Koide, R. Gene expression for PACAP receptor mRNA in the rat retina by in situ hybridization and in situ RT-PCR. Ann. N. Y. Acad. Sci?2000, 921, 366–369.
[106]  Seki, T; Shioda, S; Ogino, D; Nakai, Y; Arimura, A; Koide, R. Distribution and ultrastructural localization of a receptor for pituitary adenylate cyclase activating polypeptide and its mRNA in the rat retina. Neurosci. Lett?1997, 238, 127–130.
[107]  Waschek, JA. Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev. Neurosci?2002, 24, 14–23.
[108]  Bagnoli, P; Dal Monte, M; Casini, G. Expression of neuropeptides and their receptors in the developing retina of mammals. Histol. Histopathol?2003, 18, 1219–1242.
[109]  Borba, JC; Henze, IP; Silveira, MS; Kubrusly, RC; Gardino, PF; de Mello, MC; Hokoc, JN; de Mello, FG. Pituitary adenylate cyclase activating polypeptide (PACAP) can act as determinant of the tyrosine hydoxylase phenotype of dopaminergic cells during retina development. Dev. Brain Res?2005, 156, 193–201.
[110]  Shoge, K; Mishima, HK; Saitoh, T; Ishihara, K; Tamura, Y; Shiomi, H; Sasa, M. Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res?1999, 839, 66–73.
[111]  Silveira, MS; Costa, MR; Bozza, M; Linden, R. Pituitary adenylate cyclase activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J. Biol. Chem?2002, 277, 16075–16080.
[112]  Rabl, K; Reglodi, D; Banvolgyi, T; Somogyvari-Vigh, A; Lengvari, I; Gabriel, R; Arimura, A. PACAP inhibits anoxia-induced changes in physiological responses in horizontal cells in the turtle retina. Regul. Pept?2002, 109, 71–74.
[113]  Seki, T; Itoh, H; Nakamachi, T; Shioda, S. Suppression of ganglion cell death by PACAP following optic nerve transection in the rat. J. Mol. Neurosci?2008, 36, 57–60.
[114]  Babai, N; Atlasz, T; Tamas, A; Reglodi, D; Toth, G; Kiss, P; Gabriel, R. Search for the optimal monosodium glutamate treatment schedule to study the neuroprotective effects of PACAP in the retina. Ann. N.Y. Acad. Sci?2006, 1070, 149–155.
[115]  Babai, N; Atlasz, T; Tamas, A; Reglodi, D; Toth, G; Kiss, P; Gabriel, R. Degree of damage compensation by various PACAP treatments in monosodium glutamate-induced retinal degeneration. Neurotox. Res?2005, 8, 227–233.
[116]  Tamas, A; Gabriel, R; Racz, B; Denes, V; Kiss, P; Lubics, A; Lengvari, I; Reglodi, D. Effects of pituitary adenylate cyclase activating polypeptide in retinal degeneration induced by monosodium-glutamate. Neurosci. Lett?2004, 372, 110–113.
[117]  Atlasz, T; Szabadfi, K; Reglodi, D; Kiss, P; Tamas, A; Toth, G; Molnar, A; Szabo, K; Gabriel, R. Effects of pituitary adenylate cyclase activating polypeptide (PACAP1-38) and its fragments on retinal degeneration induced by neonatal MSG treatment. Ann. NY Acad. Sci?2009, 1163, 348–352.
[118]  Seki, T; Nakatani, M; Taki, C; Shinonara, Y; Ozawa, M; Nishimura, S; Shioda, S. Neuroprotective effect of PACAP against kainic acid (KA)-induced neurotoxicity in rat retina. Ann. NY Acad. Sci?2006, 1070, 531–534.
[119]  Racz, B; Tamas, A; Kiss, P; Toth, G; Gasz, B; Borsiczky, B; Ferencz, A; Gallyas, F, Jr; Roth, E; Reglodi, D. Involvement of ERK and CREB signalling pathways in the protective effect of PACAP on monosodium glutamate-induced retinal lesion. Ann. NY Acad. Sci?2006, 1070, 507–511.
[120]  Racz, B; Gallyas, F, Jr; Kiss, P; Toth, G; Hegyi, O; Gasz, B; Borsiczky, B; Ferencz, A; Roth, E; Tamas, A; Lengvari, I; Lubics, A; Reglodi, D. The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involves inhibition of proapoptotic signaling pathways. Regul. Pept?2006, 137, 20–26.
[121]  Racz, B; Gallyas, F, Jr; Kiss, P; Tamas, A; Lubics, A; Lengvari, I; Roth, E; Toth, G; Hegyi, O; Verzar, Zs; Fabricsek, Cs; Reglodi, D. Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotox. Res?2007, 12, 95–104.
[122]  Atlasz, T; Szabadfi, K; Kiss, P; Tamas, A; Toth, G; Reglodi, D; Gabriel, R. Evaluation of the protective effects of PACAP with cell-specific markers in ischemia-induced retinal degeneration. Brain Res Bull?2009. in press.
[123]  Virag, L; Szabo, C. The therapeutic potential of poly(ADPribose) polymerase inhibitors. Pharmacol. Rev?2002, 54, 375–429.
[124]  Pacher, P; Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol?2008, 173, 2–13.
[125]  Halmosi, R; Berente, Z; Osz, E; Toth, K; Literati-Nagy, P; Sumegi, B. Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system. Mol. Pharmacol?2001, 59, 1497–1505.
[126]  Hong, SJ; Dawson, TM; Dawson, VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci?2004, 25, 259–264.
[127]  Yu, SW; Wang, H; Poitras, MF; Coombs, C; Bowers, WJ; Federoff, HJ; Poirier, GG; Dawson, TM; Dawson, VL. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science?2002, 297, 259–263.
[128]  Xu, Y; Huang, S; Liu, ZG; Han, J. Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem?2006, 281, 8788–8795.
[129]  Veres, B; Gallyas, F, Jr; Varbiro, G; Berente, Z; Osz, E; Szekeres, G; Szabo, C; Sumegi, B. Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem. Pharmacol?2003, 65, 1373–1382.
[130]  Weise, J; Isenmann, S; Bahr, M. Increased expression and activation of poly(ADP-ribose) polymerase (PARP) contribute to retinal ganglion cell death following rat optic nerve transection. Cell Death Differ?2001, 8, 801–807.
[131]  Paquet-Durand, F; Silva, J; Talukdar, T; Johnson, LE; Azadi, S; van Veen, T; Ueffing, M; Hauck, SM; Ekstrom, PA. Excessive activation of poly-(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. Neurobiol. Dis?2007, 27, 10311–10319.
[132]  Li, GY; Osborne, NN. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly (ADP-ribose) polymerase and apoptosis-inducing factor. Brain Res?2008, 1188, 35–43.
[133]  Goebel, DJ; Winkler, BS. Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina. J. Neurochem?2006, 98, 1732–1745.
[134]  Uehara, N; Miki, K; Tsukamoto, R; Matsuoka, Y; Tsubura, A. Nicotinamide blocks N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in rats through poly (ADP-ribose) polymerase activity and Jun N-terminal kinase/activator protein-1 pathway inhibition. Exp. Eye Res?2006, 82, 488–495.
[135]  Ferrer, I; Planas, AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J. Neuropathol. Exp. Neurol?2003, 62, 329–339.
[136]  Meli, E; Pangallo, M; Baronti, R; Chiarugi, A; Cozzi, A; Pellegrini-Giampietro, DE; Moroni, F. Poly(ADP-ribose) polymerase as a key player in excitotoxicity and post-ischemic brain damage. Toxicol. Lett?2003, 139, 153–162.
[137]  Ikeda, Y; Hokamura, K; Kawai, T; Ishiyama, J; Ishikawa, K; Anraku, T; Uno, T; Umemura, K. Neuroprotective effects of KCL-440, a new poly(ADP-ribose) polymerase inhibitor, in the rat middle cerebral artery occlusion model. Brain Res?2005, 1060, 73–80.
[138]  Cozzi, A; Cipriani, G; Fossati, S; Faraco, G; Formentini, L; Min, W; Cortes, U; Wang, ZQ; Moroni, F; Chiarugi, A. Poly(ADPribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J. Cereb. Blood Flow Metab?2006, 26, 684–695.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133